scholarly journals Shuangyu Tiaozhi Granule Attenuates Hypercholesterolemia through the Reduction of Cholesterol Synthesis in Rat Fed a High Cholesterol Diet

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Jingjing Shi ◽  
Ruoqi Li ◽  
Yi Liu ◽  
Haifei Lu ◽  
Lu Yu ◽  
...  

Shuangyu Tiaozhi Granule (STG) is composed of two kinds of Chinese medicinal herbs in dioscorea, which are used for managing cholesterol levels in patients with hypercholesterolemia in traditional Chinese medicine (TCM). However, the potential molecular mechanisms of administration of STG in hypercholesterolemia remain unknown. In this study, we investigated the effects of STG on hepatic cholesterol metabolism in high cholesterol (HC) diet-induced hypercholesterolemic rat models and simvastatin was used as a positive control. Male Sprague Dawley (SD) rats were fed general or HC diet, respectively. After 4 weeks of feeding, HC diet-induced hypercholesterolemic rats were fed HC diet, STG at 5% (w/w) or 10% (w/w) mixed in the HC diet, or HC diet combined with simvastatin gavages (4 mg·kg−1·d−1) for 4 or 8 weeks. STG treatment decreased body weight gain, liver weight ratio, serum lipids levels and hepatic lipids accumulation in rats fed a HC diet. Moreover, the effects of STG on decreasing body weight and lowering liver cholesterol levels were in dose- and time-dependent. Furthermore, STG or simvastatin treatment decreased the mRNA and protein levels of HMGCR and SREBP-2 in liver. The ACAT-2 and CYP7A1 mRNA expression were significantly decreased in HC diet supplemented with STG, while the mRNA levels of LDLR were markedly increased. STG attenuates hypercholesterolemia via inhibiting SREBP-2 signaling pathway activation and increasing hepatic uptake genes expression, providing a novel idea of TCM keeping cholesterol levels down for the clinical application.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jaerin Lee ◽  
Soojin Lee ◽  
Mak-Soon Lee ◽  
Yoonjin Lee ◽  
Jiyeon Kim ◽  
...  

Abstract Objectives The objective of this study is to investigate the effects of high hydrostatic pressure (HHP) extract of mulberry fruit on the regulation of hepatic cholesterol metabolism in high-cholesterol diet fed rats. Methods Male Sprague-Dawley rats(6-week-old) were randomly divided into 5 groups, and fed with a normal diet (NOR), High cholesterol diet (HC), HC supplemented with 0.4% mulberry (ML) or 0.8% mulberry (MH) and HC treated with statin (ST) for 4 weeks. Results The HHP extract of mulberry fruit did not affect body weight gain and food intake and reduced the serum and liver lipids in the mulberry supplemented groups (ML, MH). In this study, we found that the HHP extract of mulberry fruit changed the level of genes involved in hepatic cholesterol metabolism. In the MH group, the mRNA levels of apolipoprotein A-1 (apoA-1), ATP-binding cassette transporter A1 (ABCA1) and lecithin-cholesterol acyltransferase (LCAT), which are involved in hepatic HDL biogenesis, were significantly increased by 1.80-, 1.77- and 2.65-fold, respectively, compared with the HC group. The MH group also significantly upregulated mRNA levels of cholesterol efflux related gene such as the liver X receptor α (LXRα), ATP-binding cassette protein G5 (ABCG5) and ATP-binding cassette protein G8 (ABCG8) compared to the HC group in the liver tissue. ABCG5 and ABCG8 expression levels of the MH group were also higher than those of the ST group. The mRNA level of cholesterol 7a-hydroxylase (CYP7A1), which is bile acid synthetic rate-limiting enzyme was higher in the MH group than that of the HC group. Furthermore, the immunohistochemical staining intensity became evident for CYP7A1 in liver of the MH group. Conclusions These results suggest at least partial involvement of HDL cholesterol synthesis, cholesterol efflux and bile acid synthesis in HHP extract of mulberry fruit mediated beneficial effects on hepatic cholesterol metabolism. Funding Sources None.


2008 ◽  
Vol 295 (6) ◽  
pp. E1341-E1348 ◽  
Author(s):  
E. M. E. van Straten ◽  
N. C. A. Huijkman ◽  
J. F. W. Baller ◽  
F. Kuipers ◽  
T. Plösch

Cholesterol is critical for several cellular functions and essential for normal fetal development. Therefore, its metabolism is tightly controlled during all life stages. The liver X receptors-α (LXRα; NR1H3) and -β (LXRβ; NR1H2) are nuclear receptors that are of key relevance in coordinating cholesterol and fatty acid metabolism. The aim of this study was to elucidate whether fetal cholesterol metabolism can be influenced in utero via pharmacological activation of LXR and whether this would have long-term effects on cholesterol homeostasis. Administration of the LXR agonist T0901317 to pregnant mice via their diet (0.015% wt/wt) led to induced fetal hepatic expression levels of the cholesterol transporter genes Abcg5/g8 and Abca1, higher plasma cholesterol levels, and lower hepatic cholesterol levels compared with controls. These profound changes during fetal development did not affect cholesterol metabolism in adulthood nor did they influence coping with a high-fat/high-cholesterol diet. This study shows that the LXR system is functional in fetal mice and susceptible to pharmacological activation. Despite massive changes in fetal cholesterol metabolism, regulatory mechanisms involved in cholesterol metabolism return to a “normal” state in offspring and allow coping with a high-fat/high-cholesterol diet.


2021 ◽  
pp. 22-26
Author(s):  
Afifah Bambang Sutjiatmo ◽  
Fahmy Ahsanul Haq ◽  
Sulaeman Al Jati ◽  
Suci Nar Vikasari

Introduction: Hypercholesterolemia occurs when cholesterol levels in the blood increases. Traditionally, krokot (purslane, portulaca oleracea) is used to treat cardiovascular disease. Aim: This research evaluated the effect of purslane extract to inhibit increasing of cholesterol levels. Methods: The ethanol extract dosage of purslane was 27.5, 55, and 110 mg/kg body weight (bw) and simvastatin 1.8 mg/kg bw were used as comparisons. The anti-hyper cholesterol effect test was done by feeding a high cholesterol diet and drinks containing 0.01% propylthiouracil. The test parameters were body weight and total cholesterol levels on days 0, 7, 14, and 21. Results: The results showed that the extract was able to prevent the increase in body weight compared to the control group (p<0.05) and that it could inhibit the increase of total cholesterol levels at day 14 and 21 compared to control group (p<0.05) and equivalent to simvastatin (p>0.05).


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhen-Jie Zhuang ◽  
Chao-Wen Shan ◽  
Bo Li ◽  
Min-Xia Pang ◽  
Han Wang ◽  
...  

The aim of this study was to explore the potential beneficial effects of linarin enriched Flos Chrysanthemi extract (Lin-extract) on nonalcoholic steatohepatitis (NASH) induced by high-fat high-cholesterol (HFHC) diet in rats. SD rats received normal diet, HFHC diet, or HFHC diet plus different doses of Lin-extract. The liver content of triglyceride and total cholesterol markedly increased in HFHC diet-fed model rats while middle and high dose of Lin-extract lowered liver cholesterol significantly. The expression of stearoyl-CoA desaturase (SCD1) was upregulated by HFHC diet and further elevated by high dose Lin-extract. High dose of Lin-extract also markedly lowered the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and inhibited the activation of c-Jun N-terminal kinase (JNK) induced by HFHC in livers. The HFHC-increased mRNA levels of hepatic inflammation cytokines, including monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α(TNF-α), and chemokine (C-X-C motif) ligand 1 (CXCL1), were suppressed by Lin-extract dose-dependently. Furthermore, pathology evaluation showed that high dose Lin-extract greatly improved lobular inflammation. Our results suggest that Lin-extract could attenuate liver injury and inflammation induced by HFHC diet in rats. Its modulatory effect on lipid metabolism may partially contribute to this protective effect.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Nouf Aljobaily ◽  
Michael J. Viereckl ◽  
David S. Hydock ◽  
Hend Aljobaily ◽  
Tsung-Yen Wu ◽  
...  

Background: Treatment with the chemotherapy drug doxorubicin (DOX) may lead to toxicities that affect non-cancer cells including the liver. Supplementing the diet with creatine (Cr) has been suggested as a potential intervention to minimize DOX-induced side effects, but its effect in alleviating DOX-induced hepatoxicity is currently unknown. Therefore, we aimed to examine the effects of Cr supplementation on DOX-induced liver damage. Methods: Male Sprague-Dawley rats were fed a diet supplemented with 2% Cr for four weeks, 4% Cr for one week followed by 2% Cr for three more weeks, or control diet for four weeks. Animals then received either a bolus i.p. injection of DOX (15 mg/kg) or saline as a placebo. Animals were then sacrificed five days-post injection and markers of hepatoxicity were analyzed using the liver-to-body weight ratio, aspartate transaminase (AST)-to- alanine aminotransferase (ALT) ratio, alkaline phosphatase (ALP), lipemia, and T-Bilirubin. In addition, hematoxylin and eosin (H&E) staining, Picro-Sirius Red staining, and immunofluorescence staining for CD45, 8-OHdG, and β-galactosidase were performed to evaluate liver morphology, fibrosis, inflammation, oxidative stress, and cellular senescence, respectively. The mRNA levels for biomarkers of liver fibrosis, inflammation, oxidative stress, and senescence-related genes were measured in liver tissues. Chromosomal stability was evaluated using global DNA methylation ELISA. Results: The ALT/AST ratio and liver to body weight ratio tended to increase in the DOX group, and Cr supplementation tended to attenuate this increase. Furthermore, elevated levels of liver fibrosis, inflammation, oxidative stress, and senescence were observed with DOX treatment, and Cr supplementation prior to DOX treatment ameliorated this hepatoxicity. Moreover, DOX treatment resulted in chromosomal instability (i.e., altered DNA methylation profile), and Cr supplementation showed a tendency to restore chromosomal stability with DOX treatment. Conclusion: The data suggest that Cr protected against DOX-induced hepatotoxicity by attenuating fibrosis, inflammation, oxidative stress, and senescence.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Manya Warrier ◽  
Stepahie Marshall ◽  
Allison McDaniel ◽  
Martha Wilson ◽  
Amanda Brown ◽  
...  

Recent studies have revealed a novel route for cholesterol disposal through intestine known as transintestinal cholesterol efflux (TICE) that significantly contributes to fecal neutral sterol loss. This pathway is an integral part of reverse cholesterol transport (RCT), yet major mechanisms regulating TICE are not well understood. Using an unbiased transcriptional profiling approach in mouse models of augmented TICE, we found that hepatic expression of the enzyme Flavin monoxygenase 3 (FMO3) was dramatically repressed. At the same time we identified this enzyme through transcriptional profiling, it was reported that plasma levels of its product trimethylamineoxide (TMAO) are highly predictive of atheroslcerosis in humans, and TMAO is proatherogenic in mice. To further understand FMO3’s role as a regulator of cholesterol metabolism we used antisense oligonucleotides (ASO) to knockdown FMO3 expression in mouse liver in C57BL/6 mice fed either low (0.02%) or high (0.2%) levels of dietary cholesterol. As expected, FMO3 knockdown (>90% knockdown in the liver) increased the TMA/TMAO ratio in plasma more than 3-fold. Interestingly, knockdown of FMO biliary cholesterol levels were reduced by 60%, whereas fecal cholesterol loss was quite normal in FMO3 ASO treated mice fed a high cholesterol diet, which phenocopies a previously described mouse model where TICE predominates (NPC1L1-liver transgenic mice). ASO-mediated knockdown of FMO3 also unexpectedly reduced hepatic cholesteryl ester (CE) storage by 70% in mice fed 0.2% cholesterol. In parallel, knockdown of FMO3 reduces plasma VLDL cholesterol levels and the secretion rate of VLDL cholesteryl ester, but not triacylglycerol in cholesterol fed mice. FMO3 knockdown also reduced the hepatic expression of several liver X receptor (LXR) target genes, while increasing expression of genes involved in cholesterol synthesis. Collectively, these studies have identified FMO3 as a novel regulator of hepatic cholesterol metabolism and TICE. Given that plasma levels of FMO3’s product (TMAO) are strongly associated with atherosclerosis development in humans, and production of TMAO promotes atherosclerosis in mice, these studies have important implications for future cardiovascular drug discovery.


Sign in / Sign up

Export Citation Format

Share Document