scholarly journals Investigation of the Axial Force Compensation and Deformation Control Effect of Servo Steel Struts in a Deep Foundation Pit Excavation in Soft Clay

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Honggui Di ◽  
Huiji Guo ◽  
Shunhua Zhou ◽  
Jinming Chen ◽  
Lu Wen

This study presents a comparative analysis of the deformation control effect of the hydraulic servo steel struts and ordinary steel struts of a foundation pit based on the measured axial force of the steel struts, lateral wall deflection, and ground surface settlement due to pit excavation. The results indicate that ordinary steel struts installed via axial preloading exhibit a disadvantageous axial force loss with a maximum value equal to 86.7% of the axial preloading force. When compared with ordinary steel struts, the hydraulic servo steel strut exhibits a superior supporting effect. The hydraulic servo steel strut adjusts the axial force in real time based on the deformation of the retaining structure and the axial force of the struts. Thus, the ratio of maximum lateral deflection to the excavation depth of a deep foundation pit in soft soil is less than 0.3%. Concrete struts undergo unsupported exposure during the excavation process, leading to sharply increasing deformation of the retaining structure. Therefore, regarding a foundation pit with strict requirements for deformation control, the use of hydraulic servo steel struts rather than concrete struts is recommended.

2012 ◽  
Vol 170-173 ◽  
pp. 633-636 ◽  
Author(s):  
Jie Liu ◽  
Xin Guang Xu

Based on a deep foundation pit in Tianjin, the authors introduced the retaining structure type, surrounding conditions, and the geological conditions of proposed field. According to the engineering characteristics, the excavation was divided into three typical operating conditions. Based on the monitoring of staged excavation of deep foundation pit, analysis on horizontal displacement, deep soil displacement, column settlement and bracing axial force was carried out. The general rules of the deformation and internal force of retaining structures induced by staged excavation were given, which will provide the references for similar engineering.


2011 ◽  
Vol 90-93 ◽  
pp. 485-489
Author(s):  
Li Guo ◽  
Peng Li He ◽  
Guang Jun Zhang

The enclosure pile is extensively used as retaining structure in the foundation pit excavation. And it is always combined with other reinforcement measures. So it is unreasonable to a certain degree that the enclosure pile is analyzed as cantilever structure. Taken the deep foundation pit of a subway station in Hefei for instance, the effect of other reinforcement measures on restrained conditions of enclosure piles in the paper was taken into account. And the behavior of enclosure pile under various restrained conditions was analyzed. Based on that, some helpful suggestions for practical retaining structure of foundation pit were put forward.


2012 ◽  
Vol 193-194 ◽  
pp. 624-632
Author(s):  
Xi Zhen Zhang ◽  
Quan Mei Gong ◽  
Shun Hua Zhou

In foundation pit engineering, the presence of pile plays an important role on the pit stability and deformation control. The bottom upheaval of deep foundation pit is a key criterion of judging the foundation stability and deformation. This paper built the 3D finite element model to analyze the influence of different factors (pile diameter, pile length and pile spacing) on the bottom upheaval, and concluded that: when pile length and pile spacing is constant, changing the pile diameter can hardly affect the bottom upheaval; as the pile length increased, the inhibitory effect to the bottom upheaval grew stronger with a gradually decreased growth rate; increasing pile spacing can significantly reduce the bottom upheaval, and the smaller the pile spacing, the smaller the upheaval. The concept of upheaval inhibition rate was defined to evaluate the influence of different factors of pile layout on the bottom upheaval. A correction method of calculating the bottom upheaval of foundation pit with engineering pile was proposed. An engineering instance of Shanghai Natural History Museum foundation pit was studied, and the result showed that the bottom upheaval calculated by the correction method is less than the upheaval calculated by method of residual stress, which was more close to the monitoring data. The influence of engineering pile on bottom upheaval of foundation pit should not be neglected where a large number of piles were present in deep foundation pit.


Sign in / Sign up

Export Citation Format

Share Document