Effect of Staged Excavation on Retaining Structure in Soft Soil Area

2012 ◽  
Vol 170-173 ◽  
pp. 633-636 ◽  
Author(s):  
Jie Liu ◽  
Xin Guang Xu

Based on a deep foundation pit in Tianjin, the authors introduced the retaining structure type, surrounding conditions, and the geological conditions of proposed field. According to the engineering characteristics, the excavation was divided into three typical operating conditions. Based on the monitoring of staged excavation of deep foundation pit, analysis on horizontal displacement, deep soil displacement, column settlement and bracing axial force was carried out. The general rules of the deformation and internal force of retaining structures induced by staged excavation were given, which will provide the references for similar engineering.

2012 ◽  
Vol 174-177 ◽  
pp. 2020-2023 ◽  
Author(s):  
Bing Wang

Based on a typical projects, the horizontal displacement in depth, horizontal displacement and vertical subsidence of pile top, and settlements of surrounding buildings are monitored with the process on digging of deep foundation pit. The study on digging process of foundation pit is analyzed by using finite element software. Using mapped meshing method, from mixing the pile near the semi-circular area (radius = 50m), the meshing appropriate encryption in order to improve the accuracy of the external semi-circular area (radius = 65m) mesh is less appropriate sparse.Layer by layer to kill the layers of the soil unit and activate the soil nails (spring element), the simulated excavation and synchronization of soil nails construction.Verify the arc form of failure surface in side of deep foundation pit in soft soil area. Which is valuable for reference to similar structure engineering of foundation pit.


2014 ◽  
Vol 484-485 ◽  
pp. 404-407 ◽  
Author(s):  
Qing Guo Ren ◽  
Guang Zhang ◽  
Xiao Guang Yue ◽  
Wen Cheng Liao

Deep soil horizontal displacement monitoring can measure the retaining wall board, row piles deformed shape, reflect the foundation on the vertical profile of horizontal displacement with depth changes in the law, predict foundation stability and security risks. Combined with Wuhan WANGJiaDun Pit Engineering, this article introduce CX-3C inclinometer work principle, put forward the calculated optimization measures of inclinometer, and analysis the main factors which should be considered to arrange the measuring points.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhongjing Hu ◽  
Qingbiao Wang ◽  
Shuo Yang ◽  
Zhenyue Shi ◽  
Bo Liu ◽  
...  

Advancing urbanization in China requires large-scale high-rise construction and underground transportation projects. Consequently, there is an increasing number of deep foundation pits adjacent to water bodies, and accidents occur frequently. This study uses a numerical simulation method to study the stability of the deep foundation pit near water based on the Biot three-dimensional seepage-stress coupling model, with the open-cut section on the south bank of the Jinan Yellow River Tunnel Project as the engineering field test. This indicates the following: (1) the maximum horizontal displacement of the diaphragm wall occurred in the fifth excavation stage, and a horizontal brace effectively controlled the inward horizontal displacement of the foundation pit; (2) considering the effect of seepage in the soft soil foundation, the maximum vertical displacement of the ground surface at each excavation stage occurred adjacent to the underground continuous wall. As the depth of the foundation pit increased, the vertical surface settlement decreases gradually in the direction away from the excavation face; (3) considering the seepage conditions, within each interval of excavation of the foundation pit, the horizontal displacement of the continuous underground wall and ground settlement declined; and (4) the numerical simulation and field monitoring data were in good agreement. Under the conditions of accurate model simplification and parameter selection, numerical simulations can adequately forecast conditions of the actual project.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Honggui Di ◽  
Huiji Guo ◽  
Shunhua Zhou ◽  
Jinming Chen ◽  
Lu Wen

This study presents a comparative analysis of the deformation control effect of the hydraulic servo steel struts and ordinary steel struts of a foundation pit based on the measured axial force of the steel struts, lateral wall deflection, and ground surface settlement due to pit excavation. The results indicate that ordinary steel struts installed via axial preloading exhibit a disadvantageous axial force loss with a maximum value equal to 86.7% of the axial preloading force. When compared with ordinary steel struts, the hydraulic servo steel strut exhibits a superior supporting effect. The hydraulic servo steel strut adjusts the axial force in real time based on the deformation of the retaining structure and the axial force of the struts. Thus, the ratio of maximum lateral deflection to the excavation depth of a deep foundation pit in soft soil is less than 0.3%. Concrete struts undergo unsupported exposure during the excavation process, leading to sharply increasing deformation of the retaining structure. Therefore, regarding a foundation pit with strict requirements for deformation control, the use of hydraulic servo steel struts rather than concrete struts is recommended.


2012 ◽  
Vol 446-449 ◽  
pp. 1400-1403
Author(s):  
Qi Hu ◽  
Sheng Ming Luo ◽  
Zhu Jin Jiang

By comprehensive consideration of soil conditions, geometric shape of deep foundation pit and many other kinds of factors, enclosure structure design needs to select optimal supporting and enclosure system with safety, economy and construction feasibility. On case study of enclosure structure selection about typical soft soil foundation, this paper researches effects of force- deformation of enclosure structure by brace layout, and of economy and construction feasibility. The research results may offer reference for similar projects.


2013 ◽  
Vol 405-408 ◽  
pp. 373-377
Author(s):  
Jing Wang ◽  
Feng Ming Sun ◽  
Jin You Chen ◽  
Chang Jie Xu

Aiming at a deep foundation pit in soil-rock composition with weak intercalated layers, in this paper, using the limit-balance method and finite element method to analyze the stability and deformation. The safety factor of foundation pit under the absence of retaining is much less than 1 through the limit-balance method, but through some retaining measures can guarantee its safety. According to the excavation of the foundation pit in special geological conditions, it takes pile-anchor retaining structure in upper and soil nailing in the lower part. Using the finite element to carry out dynamic simulation for the whole project, the results show that: this form of retaining can be very good to ensure the excavation of the foundation pit in the geological conditions, and it may be helpful for similar projects


2013 ◽  
Vol 353-356 ◽  
pp. 819-822 ◽  
Author(s):  
Mai Wu ◽  
Xin Zhao ◽  
Kai Liu ◽  
Chun Lei Wang ◽  
Hui Xuan Geng

A deep foundation pit project in Changsha City covers an area of about 63000m2, the largest excavation depth of the pit is 16.2 m, so it belongs to the deep and large foundation supporting engineering. By comprehensive analysis of the proposed construction site environment conditions and engineering geological conditions the different combined supporting schemes are adopted in different domains separately. In this paper the design schemes of the combined supporting technology are introduced. The problems encountered in the excavation construction process and the corresponding measures being taken are analyzed in detail. The results show that the design scheme is reasonable. Both horizontal displacement and settlement can meet specification and design requirements. At the same time the reasonable construction organization makes the support engineering be finished within the scheduled term, which saves the precious time for the following construction procedure. Furthermore it provides guidance for similar projects.


Sign in / Sign up

Export Citation Format

Share Document