scholarly journals Metal-Organic Framework MIL-53(Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Duyen Thi Cam Nguyen ◽  
Hanh Thi Ngoc Le ◽  
Trung Sy Do ◽  
Van Thinh Pham ◽  
Dai Lam Tran ◽  
...  

Ibuprofen contamination from water sources has been increasingly alarming due to its environmentally accumulative retention; however, the strategies for ibuprofen-containing water treatment are still an enormous challenge. Herein, we described the utilization of metal-organic frameworks MIL-53(Fe) (MIL = Materials of Institute Lavoisier) for the adsorption of ibuprofen in synthetic solution. Firstly, the MIL-53(Fe) was solvothemally synthesized and then characterized using the X-ray diffraction and Fourier-transform infrared spectroscopy techniques. The optimization of ibuprofen adsorption over MIL-53(Fe) was performed with three independent variables including ibuprofen concentration (1.6–18.4 mg/L), adsorbent dosage (0.16–1.84 g/L), and pH (2.6–9.4) according to the experimental design from response surface methodology. Under the optimized conditions, more than 80% of ibuprofen could be eliminated from water, indicating the promising potential of the MIL-53(Fe) material for treatment of this drug. Kinetic and isotherm models also were used to elucidate the chemisorption and monolayer behavior mechanisms of ibuprofen over MIL-53(Fe).

2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-732
Author(s):  
Chen Zhang ◽  
Jian-Qing Tao

AbstractA new Cu(II) metal-organic framework, [Cu(L)(OBA)·H2O]n (1) [H2OBA = 4,4′-oxybis(benzoic acid), L = 3,5-di(1H-benzimidazol-1-yl)pyridine] was hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis and single-crystal X-ray diffraction. Complex 1 is a four-connected uni-nodal 2D net with a (44·62) topology which shows an emission centered at λ ∼393 nm upon excitation at λ = 245 nm. Moreover, complex 1 possesses high photocatalytic activities for the decomposition of Rhodamine B (RhB) under UV light irradiation.


2020 ◽  
Vol 75 (4) ◽  
pp. 365-369
Author(s):  
Long Tang ◽  
Yu Pei Fu ◽  
Na Cui ◽  
Ji Jiang Wang ◽  
Xiang Yang Hou ◽  
...  

AbstractA new metal-organic framework, [Pb(hmpcaH)2]n (1), has been hydrothermally synthesized from Pb(OAc)2 · 3H2O and 2-hydroxy-6-methylpyridine-4-carboxylic acid (hmpcaH2; 2), and characterized by IR spectroscopy, elemental and thermogravimetric analysis, and single-crystal X-ray diffraction. In complex 1, each hmpcaH− ligand represents a three-connected node to combine with the hexacoordinated Pb(II) ions, generating a 3D binodal (3,6)-connected ant network. The crystal structure of 2 was determined. The solid-state fluorescence properties of 1 and 2 were investigated.


Langmuir ◽  
2009 ◽  
Vol 25 (6) ◽  
pp. 3618-3626 ◽  
Author(s):  
Stuart R. Miller ◽  
Paul A. Wright ◽  
Thomas Devic ◽  
Christian Serre ◽  
Gérard Férey ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


2015 ◽  
Vol 17 (26) ◽  
pp. 17471-17479 ◽  
Author(s):  
Volodymyr Bon ◽  
Nicole Klein ◽  
Irena Senkovska ◽  
Andreas Heerwig ◽  
Jürgen Getzschmann ◽  
...  

The “gate opening” mechanism in flexible MOF Ni2(2,6-ndc)2dabco was elucidated in detail.


2013 ◽  
Vol 275-277 ◽  
pp. 2367-2370
Author(s):  
Qing Yu Ma ◽  
Rui Fang Guan ◽  
Guo Zhong Li ◽  
Deng Xu Wang

A novel metal-organic framework, MnCl2(BIPS)2•2CH3OH•2H2O (1) were synthesized from MnCl2 and a tetrahedral silicon-cored ligand, Me2Si(p-C6H4-imdazol-1-yl)2 (BIPS) under the slow diffusion method. The structure was determined by single-crystal X-ray diffraction. Complex 1 is a 2D sheet structure constructed from 1D chains with 34-atom metallamacrocycles.


2020 ◽  
Author(s):  
Bikash Garai ◽  
Volodymyr Bon ◽  
Francesco Walenszus ◽  
Azat Khadiev ◽  
Dmitri Novikov ◽  
...  

Variation in the metal centres of M-M paddle-wheel SBU results in the formation of isostructural DUT-49(M) frameworks. However, the porosity of the framework was found to be different for each of the structures. While a high and moderate porosity was obtained for DUT-49(Cu) and DUT-49(Ni), respectively, other members of the series [DUT-49(M); M= Mn, Fe, Co, Zn, Cd] show very low porosity and shapes of the adsorption isotherms which is not expected for op phases of these MOFs. Investigation on those MOFs revealed that those frameworks undergo structural collapse during the solvent removal at the activation step. Thus, herein, we aimed to study the detailed structural transformations that are possibly occurring during the removal of the subcritical fluid from the framework.


Sign in / Sign up

Export Citation Format

Share Document