scholarly journals Management and Microbiological Characteristics of Membrane Formation on a Hydrophilic Acrylic Intraocular Lens: A Clinical Case Series and Material Comparative Study of Different IOLs

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaodi Qiu ◽  
Yang Wu ◽  
Yongxiang Jiang ◽  
Yinghong Ji ◽  
Xiangjia Zhu ◽  
...  

Background/Aims. To report a case series of membrane formation on intraocular lenses (IOLs) after uneventful phacoemulsification and to evaluate the material characteristics and biofilm formation on different IOLs. Methods. Ten eyes implanted with the same type of IOLs were found to have membranes on their IOLs after uneventful phacoemulsification from May 2015 to May 2016. No other patients were found with the same phenomenon among 11236 patients who underwent cataract surgeries during this period. To further investigate the reasons for their formation, we assessed seven types of IOLs used in our hospital, including their material characteristics and the presence of microbes (Staphylococcus epidermidis) on the IOL surface by scanning electron microscopy (SEM). All IOLs were incubated under in vitro flow conditions (BioFlux 1000Z). After 36 h, the IOLs were taken from the system, and both the bound bacteria and biofilm formation were observed. Results. Five eyes underwent intravitreal injections of ceftazidime and norvancomycin with one positive culture obtained from the anterior chamber fluid. The other five eyes only received topical treatment of gatifloxacin/levofloxacin and tobramycin. At the last follow-up, all patients had best-corrected visual acuity (BCVA) of 20/50 or better. In the biofilm study on the IOL surface, Staphylococcus epidermidis biofilms formed more readily on hydrophilic acrylic IOLs than on hydrophobic acrylic IOLs. Conclusions. Bacterial adhesion and biofilm tend to develop on certain types of IOLs because of the characteristics of the biomaterial.

2014 ◽  
Vol 21 (9) ◽  
pp. 1206-1214 ◽  
Author(s):  
Lin Yan ◽  
Lei Zhang ◽  
Hongyan Ma ◽  
David Chiu ◽  
James D. Bryers

ABSTRACTNosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device.Staphylococcus epidermidisis a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature.S. epidermidisantibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein ofS. epidermidis, is considered one of the most important proteins involved in the formation ofS. epidermidisbiofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) ofS. epidermidisRP62A Aap was developed, and the vaccine's efficacy was evaluatedin vitrowith a biofilm inhibition assay andin vivoin a murine model of biomaterial-associated infection. A high IgG antibody response againstS. epidermidisRP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibitedin vitroS. epidermidisRP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 106CFU ofS. epidermidisRP62A. Weight changes, inflammatory markers, and histological assay results after challenge withS. epidermidisindicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance toS. epidermidisRP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova)-immunized mice.


2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Carolyn Vitale ◽  
Tianhui Ma ◽  
Michael J Solomon ◽  
J. Scott VanEpps

Bacterial infection is known to increase the risk for thromboembolism. The mechanism underlying this correlation remains largely unknown. We recently showed that the common pathogen Staphylococcus epidermidis retards clot formation, increases clot elasticity and generates a heterogeneous clot structure that remodels over time. Here, we elucidate the mechanism of this process by evaluating the capacity for S. epidermidis to bind to fibrinogen as a function of its growth phase. We hypothesized that the effect of S. epidermidis on a fibrin clot is related to its propensity toward biofilm formation. Therefore, stationary phase (biofilm-like) S. epidermidis will have a more robust effect on clot kinetics and elasticity than exponential phase (planktonic). Furthermore, this difference is mediated by increased adhesion to fibrinogen. Rheometry was used to evaluate the formation and resultant elasticity of fibrin clots with exponential or stationary phase S. epidermidis . A functional in vitro model was developed to evaluate adhesion of S. epidermidis to a fibrinogen coated surface in a continuously flowing environment. Fluorescent labeled exponential and stationary phase S. epidermidis were visualized flowing through a parallel plate microfluidic chamber past immobilized fibrinogen. Images were obtained every 3 seconds for 30 min. Bacterial deposition rate and mean adhesion time were quantified by automated image analysis. A paired Student’s t-test was used for statistical analysis. Stationary phase S. epidermidis retards clot formation and increases resultant elasticity while exponential phase only slightly reduces elasticity. The bacterial deposition rate onto fibrinogen was significantly (p=0.03) greater for stationary phase (1741 ± 1513 cells/cm 2 · sec -1 ) vs exponential phase (676 ± 270 cells/cm 2 · sec -1 ). The average adhesion time however was similar for exponential and stationary phase cells. Coagulation proteins can provide a framework for bacterial adhesion, biofilm formation and infection. In turn infected thrombi with (biofilm-like) bacteria are stiffer which correlates to more frequent bacterial binding to fibrinogen. This provides a potential molecular mechanism for infection mediated thromboembolic events.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Erik T. Sandbakken ◽  
Eivind Witsø ◽  
Bjørnar Sporsheim ◽  
Kjartan W. Egeberg ◽  
Olav A. Foss ◽  
...  

Abstract Background In cases of prosthetic joint infections, culture of sonication fluid can supplement culture of harvested tissue samples for correct microbial diagnosis. However, discrepant results regarding the increased sensitivity of sonication have been reported in several studies. To what degree bacteria embedded in biofilm are dislodged during the sonication process has to our knowledge not been fully elucidated. In the present in vitro study, we have evaluated the effect of sonication as a method to dislodge biofilm by quantitative microscopy. Methods We used a standard biofilm method to cover small steel plates with biofilm forming Staphylococcus epidermidis ATCC 35984 and carried out the sonication procedure according to clinical practice. By comparing area covered with biofilm before and after sonication with epifluorescence microscopy, the effect of sonication on biofilm removal was quantified. Two series of experiments were made, one with 24-h biofilm formation and another with 72-h biofilm formation. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to confirm whether bacteria were present after sonication. In addition, quantitative bacteriology of sonication fluid was performed. Results Epifluorescence microscopy enabled visualization of biofilm before and after sonication. CLSM and SEM confirmed coccoid cells on the surface after sonication. Biofilm was dislodged in a highly variable manner. Conclusion There is an unexpected high variation seen in the ability of sonication to dislodge biofilm-embedded S. epidermidis in this in vitro model.


1998 ◽  
Vol 42 (4) ◽  
pp. 895-898 ◽  
Author(s):  
Silvia Schwank ◽  
Zarko Rajacic ◽  
Werner Zimmerli ◽  
Jürg Blaser

ABSTRACT The impact of bacterial adherence on antibiotic activity was analyzed with two isogenic strains of Staphylococcus epidermidis that differ in the features of their in vitro biofilm formation. The eradication of bacteria adhering to glass beads by amikacin, levofloxacin, rifampin, or teicoplanin was studied in an animal model and in a pharmacokinetically matched in vitro model. The features of S. epidermidis RP62A that allowed it to grow on surfaces in multiple layers promoted phenotypic resistance to antibiotic treatment, whereas strain M7 failed to accumulate, despite initial adherence on surfaces and growth in suspension similar to those for RP62A. Biofilms of S. epidermidis M7 were better eradicated than those of strain RP62A in vitro (46 versus 31%;P < 0.05) as well as in the animal model (39 versus 9%; P < 0.01).


2005 ◽  
Vol 73 (5) ◽  
pp. 3188-3191 ◽  
Author(s):  
Hualin Li ◽  
Lin Xu ◽  
Jianping Wang ◽  
Yumei Wen ◽  
Cuong Vuong ◽  
...  

ABSTRACT To test if biofilm formation in Staphylococcus epidermidis is dependent on the polysaccharide intercellular adhesin, whose biosynthesis is driven by the ica locus, a plasmid containing the ica locus was transferred to three ica-negative strains. Using in vitro biofilm assays and a rat central venous catheter infection model, we confirmed the importance of the ica locus for biofilm production and pathogenesis of S. epidermidis.


2014 ◽  
Vol 58 (12) ◽  
pp. 7606-7610 ◽  
Author(s):  
Kaat De Cremer ◽  
Nicolas Delattin ◽  
Katrijn De Brucker ◽  
Annelies Peeters ◽  
Soña Kucharíková ◽  
...  

ABSTRACTWe here report on thein vitroactivity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, includingCandida albicans,Candida glabrata,Candida dubliniensis,Candida krusei,Pseudomonas aeruginosa,Staphylococcus aureus, andStaphylococcus epidermidis. We validated thein vivoefficacy of orally administered toremifene againstC. albicans and S. aureusbiofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound.


2021 ◽  
Vol 55 (4) ◽  
pp. 251
Author(s):  
Dian Rachmawati ◽  
Kuntaman Kuntaman ◽  
Lindawati Alimsardjono

This study was conducted to identify the presence of icaA and icaD genes in S. epidermidis and to analyze the relationship between the presence of icaA and icaD genes with the ability of in vitro biofilm formation in S. epidermidis. S. epidermidis isolates from patients and healthy people were collected and PCR was examined to detect icaA and icaD genes. which then continued to examine the ability of biofilm formation by the method of Congo Red Agar. The results of this genotypic and phenotypic examination were then tested for correlation with statistical tests using SPSS 23.0. A total of 40 S. epidermidis isolates were collected, consisting of 20 clinical isolates and 20 isolates of normal flora. The icaA gene was positive in 5 isolates (12.5%), and 8 isolates (20%) were positive for the icaD gene, 3 isolates with icaA and icaD were both positive. One hundred percent of isolates with icaA or icaD positively formed biofilms, but there were 15 isolates (42.9%) who did not have the icaA gene but showed the ability to form biofilms, while 12 isolates (37.5%) who did not have the icaD gene also formed biofilms. Fifty percent of S. epidermidis isolates showed the ability to form biofilms at CRA. The Fisher Exact test showed a significant relationship between the icaA gene and the ability of biofilm formation (p=0.047 (p<0.05)) as well as the icaD gene (p=0.03 (p<0.05)). The icaA and icaD genes have a significant relationship to biofilm formation in S. epidermidis. There was another mechanism in the formation of biofilms that are not dependent on the ica gene.


Sign in / Sign up

Export Citation Format

Share Document