scholarly journals Extended-State-Observer-Based Terminal Sliding Mode Tracking Control for Synchronous Fly-Around with Space Tumbling Target

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Zhijun Chen ◽  
Yong Zhao ◽  
Yuzhu Bai ◽  
Dechao Ran ◽  
Liang He

This paper presents a robust controller with an extended state observer to solve the Synchronous Fly-Around problem of a chaser spacecraft approaching a tumbling target in the presence of unknown uncertainty and bounded external disturbance. The rotational motion and time-varying docking trajectory of tumbling target are given in advance and referred as the desired tracking objective. Based on dual quaternion framework, a six-degree-of-freedom coupled relative motion between two spacecrafts is modeled, in which the coupling effect, model uncertainties, and external disturbances are considered. More specially, a novel nonsingular terminal sliding mode is designed to ensure the convergence to the desired trajectory in finite time. Based on the second-order sliding mode, an extended state observer is employed to the controller to compensate the closed-loop system. By theoretical analysis, it is proved that the modified extended-state-observer-based controller guarantees the finite-time stabilization. Numerical simulations are taken to show the effectiveness and superiority of the proposed control scheme. Finally, Synchronous Fly-Around maneuvers can be accomplished with fast response and high accuracy.

2020 ◽  
Vol 10 (14) ◽  
pp. 4884
Author(s):  
Jia Deng ◽  
Cong Feng ◽  
Hongbo Zhao ◽  
Yongming Wen ◽  
Sentang Wu

For saucer-shaped unmanned aerial vehicles with blended wing bodies (BWBs), un-modelled coupling effect uncertainty and external disturbance missing the matching conditions have always been the concerns. To solve this flight control problem, this research has proposed a composite backstepping controller incorporated with a finite-time convergent differentiator and a nonlinear extended state observer (ESO). More specifically, the differentiator is employed to obtain the derivatives of the virtual control laws in finite-time and therefore eliminate the inherent “explosion of term” problem in backstepping. By the effective real-time estimation of ESO without the peaking value problem, the total effect of internal uncertainties and external disturbances is compensated in the control law design, which can dispense with parameter identification and model approximation. Furthermore, based on Lyapunov theory, it is proved rigorously that all the signals of the resulting closed-loop systems are bounded. In the final part of this paper, simulation results are presented to validate the effectiveness of the proposed control scheme.


2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ouxun Li ◽  
Ju Jiang ◽  
Li Deng ◽  
Shutong Huang

Aiming at the uncertainty and external disturbance sensitivity of the near space vehicles (NSV), a novel sliding mode controller based on the high-order linear extended state observer (LESO) is designed in this paper. In the proposed sliding mode controller, the double power reaching law is adopted to enhance the state convergence rate, and the high-order LESO is designed to improve the antidisturbance ability. Moreover, the appropriate observer bandwidth and extended order are selected to further reduce or even eliminate the disturbance by analyzing their influences on the observer performance. Finally, the simulation demonstrations are given for the NSV control system with uncertain parameters and external disturbances. The theoretical analyses and simulation results consistently indicate that the proposed high-order LESO with carefully selected extended order and observer bandwidth has better performance than the traditional ones for the nonlinear NSV system with parametric uncertainty and external disturbance.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhenshuai Wan ◽  
Yu Fu

Hydraulic servo actuator always suffers from various disturbance and uncertainties, which makes it difficult to design a higher performance controller. In this paper, an integral nonsingular terminal sliding mode controller based on extended state observer (ESO-INTSM) is proposed to improve the robust performance of hydraulic servo actuator. The ESO is designed to estimate not only the parametric uncertainties but also the model disturbance. Based on the observed states of ESO, the proposed controllers could enable hydraulic servo actuator to track the desired motion trajectories. The stability of the synthesized controller is proved via Lyapunov analysis, which is very important for high-accuracy tracking control of hydraulic servo actuator. Simulation and experimental results demonstrate that the proposed control strategy can effectively attenuate the adverse influence caused by the uncertainties and apparently improve the tracking accuracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Duoyang Li ◽  
Junzheng Wang

The position tracking problem of the electric cylinder, which has internal perturbation, external disturbance, and measurement noise of the output, is studied in this paper. A control method is proposed for achieving high tracking accuracy and tracking velocity for the wheel-legged robot application. Nonsingular fast terminal sliding mode (NFTSM) control is investigated to ensure that the system output can track the reference input in finite time. Besides, extended state observer (ESO) of the active disturbance rejection control (ADRC) is used to estimate the system lumped perturbation and compensated it in the controller based on the terminal sliding mode. This greatly reduces the chattering of the system caused by the gain of the sliding mode switch. Furthermore, tracking differentiator is designed to attenuate the output measurement noise. Simulation and experimental results illustrate that the NFTSM with ESO and TD algorithm, which is presented in this paper, has obvious superiority in the tracking precision and the antijam ability.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3305 ◽  
Author(s):  
Gang Wang ◽  
Chenghui Zhou ◽  
Yu Yu ◽  
Xiaoping Liu

When the wheeled mobile robot (WMR) is required to perform specific tasks in complex environment, i.e., on the forestry, wet, icy ground or on the sharp corner, wheel skidding and slipping inevitably occur during trajectory tracking. To improve the trajectory tracking performance of WMR under unknown skidding and slipping condition, an adaptive sliding mode controller (ASMC) design approach based on the extended state observer (ESO) is presented. The skidding and slipping is regarded as external disturbance. In this paper, the ESO is introduced to estimate the lumped disturbance containing the unknown skidding and slipping, parameter variation, parameter uncertainties, etc. By designing a sliding surface based on the disturbance estimation, an adaptive sliding mode tracking control strategy is developed to attenuate the lumped disturbance. Simulation results show that higher precision tracking and better disturbance rejection of ESO-ASMC is realized for linear and circular trajectory than the ASMC scheme. Besides, experimental results indicate the ESO-ASMC scheme is feasible and effective. Therefore, ESO-ASMC scheme can enhance the energy efficiency for the differentially driven WMR under unknown skidding and slipping condition.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Guowei Cai ◽  
Cheng Liu ◽  
Deyou Yang ◽  
Nantian Huang

As to strong nonlinearity of doubly fed induction generators (DFIG) and uncertainty of its model, a novel rotor current controller with nonlinearity and robustness is proposed to enhance fault ride-though (FRT) capacities of grid-connected DFIG. Firstly, the model error, external disturbances, and the uncertain factors were estimated by constructing extended state observer (ESO) so as to achieve linearization model, which is compensated dynamically from nonlinear model. And then rotor current controller of DFIG is designed by using terminal sliding mode variable structure control theory (TSMC). The controller has superior dynamic performance and strong robustness. The simulation results show that the proposed control approach is effective.


2013 ◽  
Vol 433-435 ◽  
pp. 1009-1014 ◽  
Author(s):  
Yang Chong ◽  
Ke Zhang

In order to intercept high maneuvering target, a super twisting guidance law based on extended state observer (ESO) is proposed. The target acceleration can be defined as external disturbance which can be estimated in ESO and compensated in super twisting guidance law. The super twisting algorithm can effectively decrease the undesired charting which exists in normal sliding mode control. The simulation results which are verified via computer show that this guidance law has strong robustness, target acceleration can be estimated and compensated, and has good miss distance.


Sign in / Sign up

Export Citation Format

Share Document