scholarly journals A New Pseudorandom Bit Generator Based on Mixing Three-Dimensional Chen Chaotic System with a Chaotic Tactics

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xuan Huang ◽  
Lingfeng Liu ◽  
Xiangjun Li ◽  
Minrong Yu ◽  
Zijie Wu

In this paper, a new chaotic system is proposed based on mixing three-dimensional Chen chaotic system with a chaotic tactics. This new system is proved to be chaotic under Wiggins’ chaos definition and can generate chaotic sequences with high complexity. Furthermore, we propose a new pseudorandom bit generator (PRBG) based on this new system. A coding algorithm is used to make the sequences uniform. Both statistical and security tests are provided to show the generated sequences are with good randomness and high complexity to withstand attacks.

Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 819 ◽  
Author(s):  
Yaqin Xie ◽  
Jiayin Yu ◽  
Shiyu Guo ◽  
Qun Ding ◽  
Erfu Wang

In this paper, a new three-dimensional chaotic system is proposed for image encryption. The core of the encryption algorithm is the combination of chaotic system and compressed sensing, which can complete image encryption and compression at the same time. The Lyapunov exponent, bifurcation diagram and complexity of the new three-dimensional chaotic system are analyzed. The performance analysis shows that the chaotic system has two positive Lyapunov exponents and high complexity. In the encryption scheme, a new chaotic system is used as the measurement matrix for compressed sensing, and Arnold is used to scrambling the image further. The proposed method has better reconfiguration ability in the compressible range of the algorithm compared with other methods. The experimental results show that the proposed encryption scheme has good encryption effect and image compression capability.


2010 ◽  
Vol 20 (04) ◽  
pp. 1061-1083 ◽  
Author(s):  
QIGUI YANG ◽  
ZHOUCHAO WEI ◽  
GUANRONG CHEN

This paper reports the finding of an unusual three-dimensional autonomous quadratic Lorenz-like chaotic system which, surprisingly, has two stable node-type of foci as its only equilibria. The new system contains the diffusionless Lorenz system and the Burke–Shaw system, and some others, as special cases. The algebraic form of the new chaotic system is similar to the other Lorenz-type systems, but they are topologically nonequivalent. To further analyze the new system, some dynamical behaviors such as Hopf bifurcation and singularly degenerate heteroclinic and homoclinic orbits, are rigorously proved with simulation verification. Moreover, it is proved that the new system with some specified parameter values has Silnikov-type homoclinic and heteroclinic chaos.


2011 ◽  
Vol 130-134 ◽  
pp. 3924-3927
Author(s):  
Wei Deng ◽  
Yan Feng Wang ◽  
Jie Fang

A new three-dimensional cubic chaotic system is reported. This new system contains five system parameters and each equation contains nonlinear term. Moreover, two equations of nonlinear term is cubic. The basic properties of the new system are investigated via theoretical analysis, numerical simulation, Lyapunov exponent spectrum, bifurcation diagram, Lyapunov dimension and Poincare diagram. The different dynamic behaviors of the new system are analyzed when each system parameter is changed .An electronic circuit was designed to realize the new chaotic system. Experimental chaotic behaviors of the system were found to be identical to the dynamic properties predicted by theoretical analysis and numerical simulations.


2021 ◽  
Author(s):  
Lilian Huang ◽  
Jin Liu ◽  
Jianhong Xiang ◽  
Zefeng Zhang

Abstract In this paper, a new discrete memristive chaotic system with infinitely wide parameter range is designed. Firstly, a discrete memristor based on a triangular wave function is constructed. The memristor conforms to the definition of generalized memristor, and a new three-dimensional memristive chaotic system is designed based on it. Numerical simulations show that it can generate chaotic sequences with high complexity.Otherwise, an improved perturbation method is proposed to estimate the output sequence of the differential system. At the same time, it is proved mathematically that the new system can always be in chaotic or hyperchaotic state with infinitely wide parameter range under certain conditions. By observing the Lyapunov exponent spectrum and the phase diagram, it is found as the absolute value of the parameter increases, the output range and ergodicity of the new system are also enhanced, and the new system has super multi-stability. This paper analyzes the mechanism of the discrete memristive chaotic system generating infinitely coexisting attractors, puts forward a method to make ordinary chaotic systems easier to obtain super multi-stability, and verifies it. The results show it is effective. Finally, the DSP hardware platform is used to implement the new system, which proves the physical existence and realizability of the system.


2003 ◽  
Vol 13 (01) ◽  
pp. 261-267 ◽  
Author(s):  
WENBO LIU ◽  
GUANRONG CHEN

This Letter introduces a relatively simple three-dimensional continuous autonomous chaotic system, which can display complex 2- and 4-scroll attractors in simulations. Its generation and basic dynamical behaviors are briefly described.


2004 ◽  
Vol 14 (05) ◽  
pp. 1507-1537 ◽  
Author(s):  
JINHU LÜ ◽  
GUANRONG CHEN ◽  
DAIZHAN CHENG

This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display (i) two 1-scroll chaotic attractors simultaneously, with only three equilibria, and (ii) two 2-scroll chaotic attractors simultaneously, with five equilibria. Several issues such as some basic dynamical behaviors, routes to chaos, bifurcations, periodic windows, and the compound structure of the new chaotic system are then investigated, either analytically or numerically. Of particular interest is the fact that this chaotic system can generate a complex 4-scroll chaotic attractor or confine two attractors to a 2-scroll chaotic attractor under the control of a simple constant input. Furthermore, the concept of generalized Lorenz system is extended to a new class of generalized Lorenz-like systems in a canonical form. Finally, the important problems of classification and normal form of three-dimensional quadratic autonomous chaotic systems are formulated and discussed.


2018 ◽  
Vol 7 (3) ◽  
pp. 1931 ◽  
Author(s):  
Sivaperumal Sampath ◽  
Sundarapandian Vaidyanathan ◽  
Aceng Sambas ◽  
Mohamad Afendee ◽  
Mustafa Mamat ◽  
...  

This paper reports the finding a new four-scroll chaotic system with four nonlinearities. The proposed system is a new addition to existing multi-scroll chaotic systems in the literature. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system via MATLAB are unveiled. As the new four-scroll chaotic system is shown to have three unstable equilibrium points, it has a self-excited chaotic attractor. An electronic circuit simulation of the new four-scroll chaotic system is shown using MultiSIM to check the feasibility of the four-scroll chaotic model.


2020 ◽  
Vol 30 (13) ◽  
pp. 2050186
Author(s):  
Song Liu ◽  
Yaping Wei ◽  
Jingyi Liu ◽  
Shiqiang Chen ◽  
Guoping Zhang

This paper introduces a new chaotic system model that could generate multi-direction multi-scroll (MDMS) chaotic attractors. The fundamental dynamics characteristics of this model are investigated, and the feasibility of the proposed method is confirmed by numerical simulation based on MATLAB. Additionally, the new chaotic system is implemented in FPGA-based platform. Implementation results are the same in MATLAB and FPGA, which indicates that they are suitable for practical applications. To investigate the cryptographic application of the new chaotic system, the chaotic sequences generated by the proposed system are used to encrypt images. The key space of the algorithm as well as key sensitivity, plain image sensitivity, plaintext histogram, correlation and information entropy are simulated and analyzed. In contrast to several encryption schemes, the proposed algorithm is very sensitive to plaintext and the key.


2013 ◽  
Vol 321-324 ◽  
pp. 921-924 ◽  
Author(s):  
Su Hai Huang

This paper deals with the finite-time chaos synchronization of the new chaotic system [with uncertain parameters. Based on the finite-time stability theory and adaptive technique, a controller has been designed to realize finite-time chaos projective synchronization and parameter identification. Moreover, numerical simulation result is included to demonstrate the effectiveness and feasibility of the proposed synchronization scheme.


2010 ◽  
Vol 20 (03) ◽  
pp. 727-734 ◽  
Author(s):  
BO YU ◽  
GUOSI HU

Few reports have introduced chaotic attractors with both multiwing topological structure and hyperchaotic dynamics. A simple construction method, for designing chaotic system with multiwing attractors, is presented in this paper. The number of wings in the attractor was doubled on applying this method to an arbitrary smooth chaotic system. Moreover, the hyperchaotic property is preserved in the new system. A new hyperchaotic system with 16-wing attractors is constructed; the result system is not only verified via numerical simulation but also confirmed by a DSP-based experiment.


Sign in / Sign up

Export Citation Format

Share Document