A NEW CHAOTIC SYSTEM AND ITS GENERATION

2003 ◽  
Vol 13 (01) ◽  
pp. 261-267 ◽  
Author(s):  
WENBO LIU ◽  
GUANRONG CHEN

This Letter introduces a relatively simple three-dimensional continuous autonomous chaotic system, which can display complex 2- and 4-scroll attractors in simulations. Its generation and basic dynamical behaviors are briefly described.

2004 ◽  
Vol 14 (05) ◽  
pp. 1507-1537 ◽  
Author(s):  
JINHU LÜ ◽  
GUANRONG CHEN ◽  
DAIZHAN CHENG

This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display (i) two 1-scroll chaotic attractors simultaneously, with only three equilibria, and (ii) two 2-scroll chaotic attractors simultaneously, with five equilibria. Several issues such as some basic dynamical behaviors, routes to chaos, bifurcations, periodic windows, and the compound structure of the new chaotic system are then investigated, either analytically or numerically. Of particular interest is the fact that this chaotic system can generate a complex 4-scroll chaotic attractor or confine two attractors to a 2-scroll chaotic attractor under the control of a simple constant input. Furthermore, the concept of generalized Lorenz system is extended to a new class of generalized Lorenz-like systems in a canonical form. Finally, the important problems of classification and normal form of three-dimensional quadratic autonomous chaotic systems are formulated and discussed.


2011 ◽  
Vol 25 (32) ◽  
pp. 4395-4409 ◽  
Author(s):  
SARA DADRAS ◽  
HAMID REZA MOMENI

In this paper, we have proposed a novel three-dimensional Lorenz-like chaotic system. Some basic properties of the system, such as dynamical behaviors, bifurcation diagram. Lyapunov exponents and Poincare mapping are investigated either analytically or numerically. Furthermore, the control problem of the new chaotic system was studied via nonlinear backstepping method. The single backstepping control input was designed according to Lyapunov stability criterion. Numerical simulations are carried out in order to demonstrate the effectiveness of the proposed control design.


2013 ◽  
Vol 325-326 ◽  
pp. 228-232
Author(s):  
Wei Hong Jia

This paper reports a novel three-dimensional autonomous chaotic system. By choosing an appropriate bifurcation parameter, we prove that a Hopf bifurcation occurs in this system when the bifurcation parameter exceeds a critical value, and some basic dynamical properties, such as Lyapunov exponents, fractal dimension, bifurcation diagram, continuous spectrum and chaotic dynamical behaviors of the new chaotic system are studied. Furthermore, the forming mechanism of its compound structure obtained by merging together two simple attractors after performing one mirror operation has been investigated by detailed numerical as well as theoretical analysis.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 819 ◽  
Author(s):  
Yaqin Xie ◽  
Jiayin Yu ◽  
Shiyu Guo ◽  
Qun Ding ◽  
Erfu Wang

In this paper, a new three-dimensional chaotic system is proposed for image encryption. The core of the encryption algorithm is the combination of chaotic system and compressed sensing, which can complete image encryption and compression at the same time. The Lyapunov exponent, bifurcation diagram and complexity of the new three-dimensional chaotic system are analyzed. The performance analysis shows that the chaotic system has two positive Lyapunov exponents and high complexity. In the encryption scheme, a new chaotic system is used as the measurement matrix for compressed sensing, and Arnold is used to scrambling the image further. The proposed method has better reconfiguration ability in the compressible range of the algorithm compared with other methods. The experimental results show that the proposed encryption scheme has good encryption effect and image compression capability.


2010 ◽  
Vol 20 (04) ◽  
pp. 1061-1083 ◽  
Author(s):  
QIGUI YANG ◽  
ZHOUCHAO WEI ◽  
GUANRONG CHEN

This paper reports the finding of an unusual three-dimensional autonomous quadratic Lorenz-like chaotic system which, surprisingly, has two stable node-type of foci as its only equilibria. The new system contains the diffusionless Lorenz system and the Burke–Shaw system, and some others, as special cases. The algebraic form of the new chaotic system is similar to the other Lorenz-type systems, but they are topologically nonequivalent. To further analyze the new system, some dynamical behaviors such as Hopf bifurcation and singularly degenerate heteroclinic and homoclinic orbits, are rigorously proved with simulation verification. Moreover, it is proved that the new system with some specified parameter values has Silnikov-type homoclinic and heteroclinic chaos.


2004 ◽  
Vol 14 (03) ◽  
pp. 971-998 ◽  
Author(s):  
WENBO LIU ◽  
GUANRONG CHEN

Dynamical behaviors of a three-dimensional autonomous chaotic system with two double-scroll attractors are studied. Some basic properties such as bifurcation, routes to chaos, periodic windows and compound structure are demonstrated with various numerical examples. System equilibria and their stabilities are discussed, and chaotic features of the attractors are justified numerically.


2013 ◽  
Vol 321-324 ◽  
pp. 921-924 ◽  
Author(s):  
Su Hai Huang

This paper deals with the finite-time chaos synchronization of the new chaotic system [with uncertain parameters. Based on the finite-time stability theory and adaptive technique, a controller has been designed to realize finite-time chaos projective synchronization and parameter identification. Moreover, numerical simulation result is included to demonstrate the effectiveness and feasibility of the proposed synchronization scheme.


2013 ◽  
Vol 278-280 ◽  
pp. 54-57
Author(s):  
Hong Yang

In this paper, a novel three-dimensional autonomous chaotic system with six terms and two quadratic nonlinearities is presented. Some basic dynamical properties of the new chaotic system are analyzed by means of equilibrium points, eigenvalue structures, Lyapunov exponent and Lyapunov dimension. In order to overcome the external conditions affected by the analog circuit’s chaotic system, digital implementation of the new chaotic system based on LabVIEW is also proposed. The results show that the experimental results by LabVIEW are consistent with the theoretical simulation results by Matlab, and the method is an effective digital implementation method.


2017 ◽  
Vol 27 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Ling Zhou ◽  
Chunhua Wang ◽  
Lili Zhou

By adding only one smooth flux-controlled memristor into a three-dimensional (3D) pseudo four-wing chaotic system, a new real four-wing hyperchaotic system is constructed in this paper. It is interesting to see that this new memristive chaotic system can generate a four-wing hyperchaotic attractor with a line of equilibria. Moreover, it can generate two-, three- and four-wing chaotic attractors with the variation of a single parameter which denotes the strength of the memristor. At the same time, various coexisting multiple attractors (e.g. three-wing attractors, four-wing attractors and attractors with state transition under the same system parameters) are observed in this system, which means that extreme multistability arises. The complex dynamical behaviors of the proposed system are analyzed by Lyapunov exponents (LEs), phase portraits, Poincaré maps, and time series. An electronic circuit is finally designed to implement the hyperchaotic memristive system.


2013 ◽  
Vol 392 ◽  
pp. 232-236
Author(s):  
Shu Min Duan ◽  
Guo Zeng Wu

A new three-dimensional chaotic system is presented in this paper. Some basic dynamical Properties of this chaotic system are investigated by means of Poincaré mapping, Lyapunov exponents and bifurcation diagram. The dynamical behaviours of this system are proved not only by performing numerical simulation and brief theoretical analysis but also by conducting an electronic circuit implementation. It is new physical phenomenon that the Poincaré mapping of this system is a group of parallel lines.


Sign in / Sign up

Export Citation Format

Share Document