scholarly journals Design and Analysis of a Three-Dimensional Discrete Memristive Chaotic System with Infinite Wide Parameter Range

Author(s):  
Lilian Huang ◽  
Jin Liu ◽  
Jianhong Xiang ◽  
Zefeng Zhang

Abstract In this paper, a new discrete memristive chaotic system with infinitely wide parameter range is designed. Firstly, a discrete memristor based on a triangular wave function is constructed. The memristor conforms to the definition of generalized memristor, and a new three-dimensional memristive chaotic system is designed based on it. Numerical simulations show that it can generate chaotic sequences with high complexity.Otherwise, an improved perturbation method is proposed to estimate the output sequence of the differential system. At the same time, it is proved mathematically that the new system can always be in chaotic or hyperchaotic state with infinitely wide parameter range under certain conditions. By observing the Lyapunov exponent spectrum and the phase diagram, it is found as the absolute value of the parameter increases, the output range and ergodicity of the new system are also enhanced, and the new system has super multi-stability. This paper analyzes the mechanism of the discrete memristive chaotic system generating infinitely coexisting attractors, puts forward a method to make ordinary chaotic systems easier to obtain super multi-stability, and verifies it. The results show it is effective. Finally, the DSP hardware platform is used to implement the new system, which proves the physical existence and realizability of the system.

2011 ◽  
Vol 130-134 ◽  
pp. 3924-3927
Author(s):  
Wei Deng ◽  
Yan Feng Wang ◽  
Jie Fang

A new three-dimensional cubic chaotic system is reported. This new system contains five system parameters and each equation contains nonlinear term. Moreover, two equations of nonlinear term is cubic. The basic properties of the new system are investigated via theoretical analysis, numerical simulation, Lyapunov exponent spectrum, bifurcation diagram, Lyapunov dimension and Poincare diagram. The different dynamic behaviors of the new system are analyzed when each system parameter is changed .An electronic circuit was designed to realize the new chaotic system. Experimental chaotic behaviors of the system were found to be identical to the dynamic properties predicted by theoretical analysis and numerical simulations.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xuan Huang ◽  
Lingfeng Liu ◽  
Xiangjun Li ◽  
Minrong Yu ◽  
Zijie Wu

In this paper, a new chaotic system is proposed based on mixing three-dimensional Chen chaotic system with a chaotic tactics. This new system is proved to be chaotic under Wiggins’ chaos definition and can generate chaotic sequences with high complexity. Furthermore, we propose a new pseudorandom bit generator (PRBG) based on this new system. A coding algorithm is used to make the sequences uniform. Both statistical and security tests are provided to show the generated sequences are with good randomness and high complexity to withstand attacks.


2010 ◽  
Vol 20 (04) ◽  
pp. 1061-1083 ◽  
Author(s):  
QIGUI YANG ◽  
ZHOUCHAO WEI ◽  
GUANRONG CHEN

This paper reports the finding of an unusual three-dimensional autonomous quadratic Lorenz-like chaotic system which, surprisingly, has two stable node-type of foci as its only equilibria. The new system contains the diffusionless Lorenz system and the Burke–Shaw system, and some others, as special cases. The algebraic form of the new chaotic system is similar to the other Lorenz-type systems, but they are topologically nonequivalent. To further analyze the new system, some dynamical behaviors such as Hopf bifurcation and singularly degenerate heteroclinic and homoclinic orbits, are rigorously proved with simulation verification. Moreover, it is proved that the new system with some specified parameter values has Silnikov-type homoclinic and heteroclinic chaos.


2009 ◽  
Vol 19 (11) ◽  
pp. 3841-3853 ◽  
Author(s):  
ZENGHUI WANG ◽  
GUOYUAN QI ◽  
YANXIA SUN ◽  
MICHAËL ANTONIE VAN WYK ◽  
BAREND JACOBUS VAN WYK

In this paper, several three-dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have similar features. A simpler and generalized 3-D continuous autonomous system is proposed based on these features which can be extended to existing 3-D four-wing chaotic systems by adding some linear and/or quadratic terms. The new system can generate a four-wing chaotic attractor with simple topological structures. Some basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincaré maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.


2014 ◽  
Vol 19 (2) ◽  
pp. 272-285 ◽  
Author(s):  
Xiaowen Luo ◽  
Chunhua Wang ◽  
Zhao Wan

Due to the dynamic characteristics of the Lorenz system, multi-wing chaotic systems are still confined in the positive half-space and fail to break the threshold limit. In this paper, a new approach for generating complex grid multi-wing attractors that can break the threshold limit via a novel nonlinear modulating function is proposed from the firstly proposed double-wing chaotic system. The proposed method is different from that of classical multi-scroll chaotic attractors generated by odd-symmetric multi-segment linear functions from Chua system. The new system is autonomous and can generate various grid multi-wing butterfly chaotic attractors without requiring any external forcing, it also can produce grid multi-wing both on the xz-plane and yz-plane. Basic properties of the new system such as dissipation property, equilibrium, stability, the Lyapunov exponent spectrum and bifurcation diagram are introduced by numerical simulation, theoretical analysis and circuit experiment, which confirm that the multi-wing attractors chaotic system has more rich and complicated chaotic dynamics. Finally, a novel module-based unified circuit is designed which provides some principles and guidelines for future circuitry design and engineering application. The circuit experimental results are consistent with the numerical simulation results. 


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1115 ◽  
Author(s):  
Shengqiu Dai ◽  
Kehui Sun ◽  
Shaobo He ◽  
Wei Ai

Based on simplified Lorenz multiwing and Chua multiscroll chaotic systems, a rotation compound chaotic system is presented via transformation. Based on a binary fractal algorithm, a new ternary fractal algorithm is proposed. In the ternary fractal algorithm, the number of input sequences is extended from 2 to 3, which means the chaotic attractor with fractal transformation can be presented in the three-dimensional space. Taking Lorenz system, rotation Lorenz system and compound chaotic system as the seed chaotic systems, the dynamics of the complex chaotic attractors with fractal transformation are analyzed by means of bifurcation diagram, complexity and power spectrum, and the results show that the chaotic sequences with fractal transformation have higher complexity. As the experimental verification, one kind of complex chaotic attractors is implemented by DSP, and the result is consistent with that of the simulation, which verifies the feasibility of digital circuit implement.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 243
Author(s):  
Tao Wang ◽  
Liwen Song ◽  
Minghui Wang ◽  
Shiqiang Chen ◽  
Zhiben Zhuang

This paper presents a novel five-dimensional three-leaf chaotic attractor and its application in image encryption. First, a new five-dimensional three-leaf chaotic system is proposed. Some basic dynamics of the chaotic system were analyzed theoretically and numerically, such as the equilibrium point, dissipative, bifurcation diagram, plane phase diagram, and three-dimensional phase diagram. Simultaneously, an analog circuit was designed to implement the chaotic attractor. The circuit simulation experiment results were consistent with the numerical simulation experiment results. Second, a convolution kernel was used to process the five chaotic sequences, respectively, and the plaintext image matrix was divided according to the row and column proportions. Lastly, each of the divided plaintext images was scrambled with five chaotic sequences that were convolved to obtain the final encrypted image. The theoretical analysis and simulation results demonstrated that the key space of the algorithm was larger than 10150 that had strong key sensitivity. It effectively resisted the attacks of statistical analysis and gray value analysis, and had a good encryption effect on the encryption of digital images.


Author(s):  
A. Azarang ◽  
M. Miri ◽  
S. Kamaei ◽  
M. H. Asemani

A new three-dimensional (3D) chaotic system is proposed with four nonlinear terms which include two quadratic terms. To analyze the dynamical properties of the new system, mathematical tools such as Lyapunov exponents (LEs), Kaplan–York dimensions, observability constants, and bifurcation diagram have been exploited. The results of these calculations verify the specific features of the new system and further determine the effect of different system parameters on its dynamics. The proposed system has been experimentally implemented as an analog circuit which practically confirms its predicted chaotic behavior. Moreover, the problem of master–slave synchronization of the proposed chaotic system is considered. To solve this problem, we propose a new method for designing a nonfragile Takagi–Sugeno (T–S) fuzzy static output feedback synchronizing controller for a general chaotic T–S system and applied the method to the proposed system. Some practical advantages are achieved employing the new nonlinear controller as well as using system output data instead of the full-state data and considering gain variations because of the uncertainty in values of practical components used in implementation the controller. Then, the designed controller has been realized using analog devices to synchronize two circuits with the proposed chaotic dynamics. Experimental results show that the proposed nonfragile controller successfully synchronizes the chaotic circuits even with inexact analog devices.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-9
Author(s):  
Zain_Aldeen Rahman ◽  
Basil Jassim ◽  
Yasir Al_Yasir

In this paper, a new nonlinear dynamic system, new three-dimensional fractional order complex chaotic system, is presented. This new system can display hidden chaotic attractors or self-excited chaotic attractors. The Dynamic behaviors of this system have been considered analytically and numerically. Different means including the equilibria, chaotic attractor phase portraits, the Lyapunov exponent, and the bifurcation diagrams are investigated to show the chaos behavior in this new system. Also, a synchronization technique between two identical new systems has been developed in master- slave configuration. The two identical systems are synchronized quickly. Furthermore, the master-slave synchronization is applied in secure communication scheme based on chaotic masking technique. In the application, it is noted that the message is encrypted and transmitted with high security in the transmitter side, in the other hand the original message has been discovered with high accuracy in the receiver side. The corresponding numerical simulation results proved the efficacy and practicability of the developed synchronization technique and its application


2012 ◽  
Vol 214 ◽  
pp. 935-938 ◽  
Author(s):  
Su Hai Huang

A new three-dimensional autonomous chaotic system is constructed. Some basic dynamical characteristics of this system with integer order are studied. The switchable chaotic system is constitutive of two subsystems. The dynamic characteristics of the fractional-order switchable system varying with the differential operator orders with fixed parameter are analyzed. Numerical simulations on the dynamics of new system with fractional-order have been carried out.


Sign in / Sign up

Export Citation Format

Share Document