scholarly journals Contribution of Levosimendan in Weaning from Mechanical Ventilation in Patients with Left Ventricular Dysfunction: A Pilot Study

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ifigeneia Kaltsi ◽  
Epameinondas Angelopoulos ◽  
Georgios Tzanis ◽  
Antonios Sideris ◽  
Konstantinos Tyrovolas ◽  
...  

Purpose. Mechanically ventilated patients with left ventricular (LV) dysfunction are at risk of weaning failure. We hypothesized that optimization of cardiovascular function might facilitate the weaning process. Therefore, we investigated the efficacy of levosimendan in difficult-to-wean patients with impaired LV performance. Materials and Methods. Nineteen mechanically ventilated patients, with LV ejection fraction (LVEF) 34 ± 8%, difficult-to-wean from the ventilator, were assessed by transthoracic echocardiography before the start and at the end of a spontaneous breathing trial (SBT) (first SBT). Eight patients successfully weaned. The remaining 11 failed-to-wean patients received a 24-hour infusion of levosimendan, and they were reassessed during a second SBT. Results. After levosimendan administration, LVEF increased from 30 ± 10 to 36 ± 3% (p=0.01). End-SBT peak e′ velocity increased from 7 to 9 cm/s (p=0.02). E/e′ increased from 10.5 to 12.9 during the first SBT, whereas it remained constant at 10 throughout the second SBT (p=0.01). During the second SBT, partial pressure of arterial oxygen and central venous oxygen saturation improved, compared to the first one (93 ± 34 vs. 67 ± 28 mmHg, p=0.03, and 66 ± 11% vs. 57 ± 9%, p=0.02, respectively). Nine of the 11 patients were successfully weaned from the ventilator. Conclusions. In difficult-to-wean from mechanical ventilation patients with LV dysfunction, levosimendan might contribute to successful weaning by improving both systolic and diastolic LV function.

2021 ◽  
Vol 9 (B) ◽  
pp. 1370-1380
Author(s):  
Dina Zeid ◽  
Walid Ahmed ◽  
Randa Soliman ◽  
Abdou Alazab ◽  
Ahmed Samir Elsawy

BACKGROUND: Elevation of the left ventricular (LV) filling pressure can occur during weaning of mechanical ventilation due to increase in LV preload and/or changes in LV compliance and LV afterload. AIM: The aim of the study was to evaluate respiratory changes in internal jugular vein and inferior vena cava during weaning from mechanical ventilation. METHODS: Prospective observational study conducted on 80 consecutive patients. Patients were divided randomly into two groups who met the readiness criteria to start spontaneous breathing trial (SBT) either on pressure support ventilation (PS/CPAP) for 30 min or T-piece for 120 min. Weaning failure was defined as a failed SBT or reintubation within 48 h. Echocardiographic evaluation was done on assisted controlled ventilation and at the end of SBT for preload assessment. RESULTS: Mitral Septal E/E’ Cutoff value ≥6.1 with sensitivity 81% and specificity 84.2%, and AUC 0.73 for predicting weaning failure. IVC distensibility index on CPAP cutoff value ≥66.5% with sensitivity 100% and specificity 68.4%, and AUC 0.85. In Group II, Mitral Septal E/E’ Cut off value ≥5.8 with sensitivity 83% and specificity 90.9%, AUC 0.83, IVC collapsibility index Cut off value ≥45.5% with sensitivity 72% and specificity 86%, AUC 0.73. CONCLUSION: Mitral Septal E/E’ could predict weaning-induced diastolic dysfunction. IVC plays an important role in predicting weaning failure.


2021 ◽  
Author(s):  
Yuki Itagaki ◽  
Naofumi Yoshida ◽  
Masahiro Banno ◽  
Ryo Momosaki ◽  
Kohei Yamada ◽  
...  

Abstract Background Hypoalbuminemia is associated with fluid overload, the development of acute respiratory distress syndrome, and mortality. Co-administration of albumin and diuretics for treatment of patients with hypoalbuminemia is expected to increase urinary output, without hemodynamic instability, and improve pulmonary function; however, these effects have not been systematically investigated. Here, we aimed to clarify the benefits of co-administration of albumin and diuretics for mechanically ventilated patients.MethodsWe searched for randomized, placebo-controlled trials that investigated the effects of co-administration of albumin and diuretics compared with placebo and diuretics, in mechanically ventilated patients with hypoalbuminemia. We searched these trials via the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via PubMed and EMBASE. Primary outcomes were hypotensive events after intervention, all-cause mortality, and the length of mechanical ventilation. Secondary outcomes were improvement in the ratio of partial pressure arterial oxygen and fraction of inspired oxygen (P/F ratio) at 24 h, total urine output (mL/d), and the clinical requirement of renal replacement therapy (RRT).ResultsAmong 1574 records identified, we included three studies for quantitative analysis. The results of albumin administration were as follows: hypotensive events [risk ratio (RR) -1.05 (95% confidence interval (CI): 0.15 to 0.81], all-cause mortality [RR 1.0 (95% CI: 0.45 to 2.23], the length of mechanical ventilation in days [mean difference (MD) -1.05 (95% CI: -3.35 to 1.26)], improvement of P/F ratio [RR 2.83 (95% CI: 1.42 to 5.67)]. None of the randomized controlled trials reported the total urine output, whereas one reported that no participants required RRT. Adverse events were not reported during the trials. The certainty of evidence was low (in the hypotensive events after intervention, all-cause mortality) to moderate (in the length of mechanical ventilation in days, improvement of P/F ratio, clinical requirement of RRT, and adverse events).ConclusionsAlthough this treatment combination reduced the number of days for which mechanical ventilation was required, it did not reduce the all-cause mortality at 30 days. Taken together, co-administration of albumin and diuretics may reduce hypotensive events and improve the P/F ratio at 24 h.


2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Longxiang Su ◽  
Chun Liu ◽  
Fengxiang Chang ◽  
Bo Tang ◽  
Lin Han ◽  
...  

Abstract Background Analgesia and sedation therapy are commonly used for critically ill patients, especially mechanically ventilated patients. From the initial nonsedation programs to deep sedation and then to on-demand sedation, the understanding of sedation therapy continues to deepen. However, according to different patient’s condition, understanding the individual patient’s depth of sedation needs remains unclear. Methods The public open source critical illness database Medical Information Mart for Intensive Care III was used in this study. Latent profile analysis was used as a clustering method to classify mechanically ventilated patients based on 36 variables. Principal component analysis dimensionality reduction was used to select the most influential variables. The ROC curve was used to evaluate the classification accuracy of the model. Results Based on 36 characteristic variables, we divided patients undergoing mechanical ventilation and sedation and analgesia into two categories with different mortality rates, then further reduced the dimensionality of the data and obtained the 9 variables that had the greatest impact on classification, most of which were ventilator parameters. According to the Richmond-ASS scores, the two phenotypes of patients had different degrees of sedation and analgesia, and the corresponding ventilator parameters were also significantly different. We divided the validation cohort into three different levels of sedation, revealing that patients with high ventilator conditions needed a deeper level of sedation, while patients with low ventilator conditions required reduction in the depth of sedation as soon as possible to promote recovery and avoid reinjury. Conclusion Through latent profile analysis and dimensionality reduction, we divided patients treated with mechanical ventilation and sedation and analgesia into two categories with different mortalities and obtained 9 variables that had the greatest impact on classification, which revealed that the depth of sedation was limited by the condition of the respiratory system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinshu Katayama ◽  
Jun Shima ◽  
Ken Tonai ◽  
Kansuke Koyama ◽  
Shin Nunomiya

AbstractRecently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable.Trial registration UMIN000027671. Registered 7 June 2017.


Author(s):  
Dr. Metilda ◽  
Dr. A. Jaganath

Mechanical ventilation is widely used to treat patients with critical conditions. This treatment is usually applied for difficulty in breathing. The use of mechanical ventilation devices has unique benefits to the patient. However, it can also cause various problems. Reduction in communication rank as one of the most negative experiences in mechanically ventilated patients. Effective communication with ventilator-based patients is essential. Nursing management of a mechanically ventilated patient is challenging on many levels, requiring a wealth of high technical skills. The Patient Communications Board improves communication, maintains information and creates a comfortable, attractive setting for patient, family and health care workers. The research methodology used for the study is a Quasi experimental approach, post-test only design with a comparison group to assess the effect of the communication board on the level of satisfaction over communication among clients on mechanical ventilator. The sample was selected by purposive sampling technique and included 30 (experimental group-15, control group-15), mechanically ventilated patients in PESIMR hospital, Kuppam. The control group patients were provided with routine communication methods, while the experimental group were communicated with communication board. The level of satisfaction on communication was assessed by a 15items rating scale. Data was analysed using both the descriptive and inferential statistics. There was a significant difference in the level of satisfaction on communication among the patients who were communicated using communication board compared to the routine method of communication. The communication board had significantly improved the communication pattern and increased the satisfaction among the patients who are mechanically ventilated.


2021 ◽  
Vol 104 (2) ◽  
pp. 304-309

Background: Sleep disruptions frequently occur in hospitalized patients, especially with critically ill, mechanically ventilated patients. Severely altered sleep architectures result in unclassifiable sleep stages as listed by the conventional Rechtschaffen and Kales (R&K) criteria, and a new classification for sleep scoring including atypical sleep (AS) and pathological wakefulness (PW) has recently been proposed. Objective: To demonstrate the feasibility of performing objective sleep qualification in patients receiving mechanical ventilation due to acute respiratory failure. Materials and Methods: In the present prospective cohort study, polysomnography was performed in 38 patients requiring invasive mechanical ventilation due to acute respiratory failure at the respiratory care unit (RCU) of Siriraj Hospital between February and December 2017. Their sleep stages were analyzed by conventional rules and the new classifications of AS and PW. The associations between the presence of AS or PW and the patients’ characteristics were analyzed. Correlations between sleep quality and clinical parameters were also determined. Results: Most of the patients had poor sleep quality with median sleep efficiency (IQR) of 35.9% (18.5, 62.3) and significantly decreased slowwave sleep [median (IQR) 0.4% (0.00, 5.70)] and REM [median (IQR) 1.3% (0.00, 6.43)]. According to the new classifications, 14 out of 38 (prevalence of 36.8%) mechanically ventilated patients had AS. The prevalence of PW and either AS or PW were 36.8% and 52.6%, respectively. A higher baseline respiratory rate was observed among patients who had either AS or PW at 24 versus 20 breaths/minute (p=0.02), while a longer duration of mechanical ventilator support was found in patients with PW at nine versus five (p=0.003). Patient-ventilator asynchrony was also noted in all patients. Conclusion: Sleep quality among critically ill and mechanically ventilated patients was severely disturbed. A higher prevalence of AS and PW were noted. The technical feasibility of sleep recording in Thai intensive care unit (ICU) settings was established. Keywords: Polysomnography, Atypical sleep, ICU


2018 ◽  
Vol 2 (S1) ◽  
pp. 30-31
Author(s):  
Emily M. Evans ◽  
Rebecca J. Doctor ◽  
Brian M. Fuller ◽  
Richard S. Hotchkiss ◽  
Anne M. Drewry

OBJECTIVES/SPECIFIC AIMS: (1) To evaluate clinical outcomes in mechanically ventilated patients with and without fever. We hypothesize that, after adjusting for confounding factors such as age and severity of illness: (a) In septic patients, fever will be associated with improved clinical outcomes. (b) In nonseptic patients, fever will be associated with worse clinical outcomes. (2) To examine the relationship between antipyretics and mortality in mechanically ventilated patients at risk for an acute lung injury. We hypothesize that antipyretics will have no effect on clinical outcomes in mechanically ventilated patients with and without sepsis. METHODS/STUDY POPULATION: This is a retrospective study of a “before and after” observational cohort of 1705 patients with acute initiation of mechanical ventilation in the Emergency Department from September 2009 to March 2016. Data were collected retrospectively on the first 72 hours of temperature and antipyretic medication from the EHR. Temperatures measurements were adjusted based on route of measurement. Patients intubated for cardiac arrest or brain injury were excluded from our primary analysis due to the known damage of hyperthermia in these subsets. Cox proportional hazard models and multivariable linear regression analyzed time-to-event and continuous outcomes, respectively. Predetermined patient demographics were entered into each multivariable model using backward and forward stepwise regression. Models were assessed for collinearity and residual plots were used to assure each model met assumptions. RESULTS/ANTICIPATED RESULTS: Antipyretic administration is currently undergoing analysis. Initial temperature results are reported here. In the overall group, presence of hypothermia or fever within 72 hours of intubation compared with normothermia conferred a hazard ratio (HR) of 1.95 (95% CI: 1.48–2.56) and 1.31 (95% CI: 0.97–1.78), respectively. Presence of hypothermia and fever reduced hospital free days by 3.29 (95% CI: 2.15–4.42) and 2.34 (95% CI: 1.21–3.46), respectively. In our subgroup analysis of patients with sepsis, HR for 28-day mortality 2.57 (95% CI: 1.68–3.93) for hypothermia. Fever had no effect on mortality (HR 1.11, 95% CI: 0.694–1.76). Both hypothermia and fever reduced hospital free days by 5.39 (95% CI: 4.33–7.54) and 3.98 (95% CI: 2.46–5.32) days, respectively. DISCUSSION/SIGNIFICANCE OF IMPACT: As expected, both hypothermia and fever increased 28-day mortality and decreased hospital free days. In our sepsis subgroup, hypothermia again resulted in higher mortality and fewer hospital free days, while fever did not have a survival benefit or cost, but reduced hospital free days. Antipyretic administration complicates these findings, as medication may mask fever or exert an effect on survival. Fever may also affect mechanically ventilated septic patients differently than septic patients not on mechanical ventilation. Continued analysis of this data including antipyretic administration, ventilator free days and progression to ARDS will address these questions.


2020 ◽  
Vol 21 (4) ◽  
pp. 327-333
Author(s):  
Ravindranath Tiruvoipati ◽  
Sachin Gupta ◽  
David Pilcher ◽  
Michael Bailey

The use of lower tidal volume ventilation was shown to improve survival in mechanically ventilated patients with acute lung injury. In some patients this strategy may cause hypercapnic acidosis. A significant body of recent clinical data suggest that hypercapnic acidosis is associated with adverse clinical outcomes including increased hospital mortality. We aimed to review the available treatment options that may be used to manage acute hypercapnic acidosis that may be seen with low tidal volume ventilation. The databases of MEDLINE and EMBASE were searched. Studies including animals or tissues were excluded. We also searched bibliographic references of relevant studies, irrespective of study design with the intention of finding relevant studies to be included in this review. The possible options to treat hypercapnia included optimising the use of low tidal volume mechanical ventilation to enhance carbon dioxide elimination. These include techniques to reduce dead space ventilation, and physiological dead space, use of buffers, airway pressure release ventilation and prone positon ventilation. In patients where hypercapnic acidosis could not be managed with lung protective mechanical ventilation, extracorporeal techniques may be used. Newer, minimally invasive low volume venovenous extracorporeal devices are currently being investigated for managing hypercapnia associated with low and ultra-low volume mechanical ventilation.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Yongpeng Xie ◽  
Suxia Liu ◽  
Hui Zheng ◽  
Lijuan Cao ◽  
Kexi Liu ◽  
...  

Objective. To identify the clinical correlations between plasma growth differentiation factor-15 (GDF-15), skeletal muscle function, and acute muscle wasting in ICU patients with mechanical ventilation. In addition, to investigate its diagnostic value for ICU-acquired weakness (ICU-AW) and its predictive value for 90-day survival in mechanically ventilated patients. Methods. 95 patients with acute respiratory failure, who required mechanical ventilation therapy, were randomly selected among hospitalized patients from June 2017 to January 2019. The plasma GDF-15 level was detected by ELISA, the rectus femoris cross-sectional area (RFcsa) was measured by ultrasound, and the patient’s muscle strength was assessed using the British Medical Research Council (MRC) muscle strength score on day 1, day 4, and day 7. Patients were divided into an ICU-AW group and a non-ICU-AW group according to their MRC-score on the 7th day. The differences in plasma GDF-15 level, MRC-score, and RFcsa between the two groups were compared on the 1st, 4th, and 7th day after being admitted to the ICU. Then, the correlations between plasma GDF-15 level, RFcsa loss, and MRC-score on day 7 were investigated. The receiver operating characteristic curve (ROC) was used to analyze the plasma GDF-15 level, RFcsa loss, and % decrease in RFcsa on the 7th day to the diagnosis of ICU-AW in mechanically ventilated patients. Moreover, the predictive value of GDF-15 on the 90-day survival status of patients was assessed using patient survival curves. Results. Based on whether the 7th day MRC-score was <48, 50 cases were included in the ICU-AW group and 45 cases in the non-ICU-AW group. The length of mechanical ventilation, ICU length of stay, and hospital length of stay were significantly longer in the ICU-AW group than in the non-ICU-AW group (all P<0.05), while the other baseline indicators were not statistically significant between the two groups. As the treatment time increased, the plasma GDF-15 level was significantly increased, the ICU-AW group demonstrated a significant decreasing trend in the MRC-score and RFcsa, while no significant changes were found in the non-ICU-AW group. In the ICU-AW group, the plasma GDF-15 level was significantly higher than that in the non-ICU-AW group, while the RFcsa and the MRC-score were significantly lower than those in the non-ICU-AW group (GDF-15 (pg/ml): 2542.44 ± 629.38 vs. 1542.86 ± 502.86; RFcsa (cm2): 2.04 ± 0.64 vs. 2.34 ± 0.61; MRC-score: 41.22 ± 3.42 vs. 51.42 ± 2.72, all P<0.001). The plasma GDF-15 level was significantly negatively correlated with the MRC-score (r = −0.60), while it was significantly positively correlated with the RFcsa loss (r = 0.18) and the % decrease in RFcsa (r = 0.16). Moreover, the RFcsa loss was significantly negatively correlated with the MRC-score (r = −0.27) (all P<0.001). The ROC curve analysis showed that plasma GDF-15 level, RFcsa loss, and % decrease in RFcsa on day 7 had predictive value for ICU-AW diagnosis in mechanically ventilated patients. More specifically, the area under the ROC curve (AUC) of GDF-15 was 0.904, the AUC of RFcsa loss was 0.873, and the AUC of % decrease in RFcsa was 0.886 (all P<0.001). The 90-day survival curve demonstrated that the survival rate of the high plasma GDF-15 level group was 54.00%, while that of the low plasma GDF-15 level group was 75.56%. The difference between the two groups was statistically significant (P<0.05). Conclusion. The plasma GDF-15 concentration level was significantly associated with skeletal muscle function and muscle wasting on day 7 in ICU patients with mechanical ventilation. Therefore, it can be concluded that the plasma GDF-15 level on the 7th day has a high diagnostic yield for ICU-acquired muscle weakness, and it can predict the 90-day survival status of ICU mechanically ventilated patients.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Francesco Corradi ◽  
Claudia Brusasco ◽  
Francesco Paparo ◽  
Tullio Manca ◽  
Gregorio Santori ◽  
...  

Background and Objective. Renal Doppler resistive index (RDRI) is a noninvasive index considered to reflect renal vascular perfusion. The aim of this study was to identify the independent hemodynamic determinants of RDRI in mechanically ventilated patients after cardiac surgery.Methods. RDRI was determined in 61 patients by color and pulse Doppler ultrasonography of the interlobar renal arteries. Intermittent thermodilution cardiac output measurements were obtained and blood samples taken from the tip of pulmonary artery catheter to measure hemodynamics and mixed venous oxygen saturation (SvO2).Results. By univariate analysis, RDRI was significantly correlated with SvO2, oxygen extraction ratio, left ventricular stroke work index, and cardiac index, but not heart rate, central venous pressure, mean artery pressure, pulmonary capillary wedge pressure, systemic vascular resistance index, oxygen delivery index, oxygen consumption index, arterial lactate concentration, and age. However, by multivariate analysis RDRI was significantly correlated with SvO2only.Conclusions. The present data suggests that, in mechanically ventilated patients after cardiac surgery, RDRI increases proportionally to the decrease in SvO2, thus reflecting an early vascular response to tissue hypoxia.


Sign in / Sign up

Export Citation Format

Share Document