scholarly journals Marginalized Point Mass Filter with Estimating Tidal Depth Bias for Underwater Terrain-Aided Navigation

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Dongdong Peng ◽  
Tian Zhou ◽  
Chao Xu ◽  
Wanyuan Zhang ◽  
Jiajun Shen

Terrain-aided navigation is a promising approach to submerged position updates for autonomous underwater vehicles by matching terrain measurements against an underwater reference map. With an accurate prediction of tidal depth bias, a two-dimensional point mass filter, only estimating the horizontal position, has been proven to be effective for terrain-aided navigation. However, the tidal depth bias is unpredictable or predicts in many cases, which will result in the rapid performance degradation if a two-dimensional point mass filter is still used. To address this, a marginalized point mass filter in three dimensions is presented to concurrently estimate and compensate the tidal depth bias in this paper. In the method, the tidal depth bias is extended as a state variable and estimated using the Kalman filter, whereas the horizontal position state is still estimated by the original two-dimensional point mass filter. With the multibeam sonar, simulation experiments in a real underwater digital map demonstrate that the proposed method is able to accurately estimate the tidal depth bias and to obtain the robust navigation solution in suitable terrain.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Arjun Bagchi ◽  
Sudipta Dutta ◽  
Kedar S. Kolekar ◽  
Punit Sharma

Abstract Two dimensional field theories with Bondi-Metzner-Sachs symmetry have been proposed as duals to asymptotically flat spacetimes in three dimensions. These field theories are naturally defined on null surfaces and hence are conformal cousins of Carrollian theories, where the speed of light goes to zero. In this paper, we initiate an investigation of anomalies in these field theories. Specifically, we focus on the BMS equivalent of Weyl invariance and its breakdown in these field theories and derive an expression for Weyl anomaly. Considering the transformation of partition functions under this symmetry, we derive a Carrollian Liouville action different from ones obtained in the literature earlier.


1999 ◽  
Vol 121 (5) ◽  
pp. 480-486 ◽  
Author(s):  
O. I. Craciunescu ◽  
S. K. Das ◽  
S. T. Clegg

Dynamic contrast-enhanced magnetic resonance imaging (DE-MRI) of the tumor blood pool is used to study tumor tissue perfusion. The results are then analyzed using percolation models. Percolation cluster geometry is depicted using the wash-in component of MRI contrast signal intensity. Fractal characteristics are determined for each two-dimensional cluster. The invasion percolation model is used to describe the evolution of the tumor perfusion front. Although tumor perfusion can be depicted rigorously only in three dimensions, two-dimensional cases are used to validate the methodology. It is concluded that the blood perfusion in a two-dimensional tumor vessel network has a fractal structure and that the evolution of the perfusion front can be characterized using invasion percolation. For all the cases studied, the front starts to grow from the periphery of the tumor (where the feeding vessel was assumed to lie) and continues to grow toward the center of the tumor, accounting for the well-documented perfused periphery and necrotic core of the tumor tissue.


Author(s):  
Cyril Dubus ◽  
Ken Sekimoto ◽  
Jean-Baptiste Fournier

We establish the most general form of the discrete elasticity of a two-dimensional triangular lattice embedded in three dimensions, taking into account up to next-nearest-neighbour interactions. Besides crystalline system, this is relevant to biological physics (e.g. red blood cell cytoskeleton) and soft matter (e.g. percolating gels, etc.). In order to correctly impose the rotational invariance of the bulk terms, it turns out to be necessary to take into account explicitly the elasticity associated with the vertices located at the edges of the lattice. We find that some terms that were suspected in the literature to violate rotational symmetry are, in fact, admissible.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Peter C. Chu

The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in air and water columns, burial depth/orientation in sediment, as well as height, area, and volume protruding. Model inputs consist of parameters of environment, mine characteristics, and initial release. This paper reviews near three decades’ effort on model development from one to three dimensions: (1) one-dimensional models predict the vertical position of the mine’s center of mass (COM) with the assumption of constant falling angle, (2) two-dimensional models predict the COM position in the (x,z) plane and the rotation around the y-axis, and (3) three-dimensional models predict the COM position in the (x,y,z) space and the rotation around the x-, y-, and z-axes. These models are verified using the data collected from mine impact burial experiments. The one-dimensional model only solves one momentum equation (in the z-direction). It cannot predict the mine trajectory and burial depth well. The two-dimensional model restricts the mine motion in the (x,z) plane (which requires motionless for the environmental fluids) and uses incorrect drag coefficients and inaccurate sediment dynamics. The prediction errors are large in the mine trajectory and burial depth prediction (six to ten times larger than the observed depth in sand bottom of the Monterey Bay). The three-dimensional model predicts the trajectory and burial depth relatively well for cylindrical, near-cylindrical mines, and operational mines such as Manta and Rockan mines.


1993 ◽  
Vol 69 (3) ◽  
pp. 965-979 ◽  
Author(s):  
K. Hepp ◽  
A. J. Van Opstal ◽  
D. Straumann ◽  
B. J. Hess ◽  
V. Henn

1. Although the eye has three rotational degrees of freedom, eye positions, during fixations, saccades, and smooth pursuit, with the head stationary and upright, are constrained to a plane by ListingR's law. We investigated whether Listing's law for rapid eye movements is implemented at the level of the deeper layers of the superior colliculus (SC). 2. In three alert rhesus monkeys we tested whether the saccadic motor map of the SC is two dimensional, representing oculocentric target vectors (the vector or V-model), or three dimensional, representing the coordinates of the rotation of the eye from initial to final position (the quaternion or Q-model). 3. Monkeys made spontaneous saccadic eye movements both in the light and in the dark. They were also rotated about various axes to evoke quick phases of vestibular nystagmus, which have three degrees of freedom. Eye positions were measured in three dimensions with the magnetic search coil technique. 4. While the monkey made spontaneous eye movements, we electrically stimulated the deeper layers of the SC and elicited saccades from a wide range of initial positions. According to the Q-model, the torsional component of eye position after stimulation should be uniquely related to saccade onset position. However, stimulation at 110 sites induced no eye torsion, in line with the prediction of the V-model. 5. Activity of saccade-related burst neurons in the deeper layers of the SC was analyzed during rapid eye movements in three dimensions. No systematic eye-position dependence of the movement fields, as predicted by the Q-model, could be detected for these cells. Instead, the data fitted closely the predictions made by the V-model. 6. In two monkeys, both SC were reversibly inactivated by symmetrical bilateral injections of muscimol. The frequency of spontaneous saccades in the light decreased dramatically. Although the remaining spontaneous saccades were slow, Listing's law was still obeyed, both during fixations and saccadic gaze shifts. In the dark, vestibularly elicited fast phases of nystagmus could still be generated in three dimensions. Although the fastest quick phases of horizontal and vertical nystagmus were slower by about a factor of 1.5, those of torsional quick phases were unaffected. 7. On the basis of the electrical stimulation data and the properties revealed by the movement field analysis, we conclude that the collicular motor map is two dimensional. The reversible inactivation results suggest that the SC is not the site where three-dimensional fast phases of vestibular nystagmus are generated.(ABSTRACT TRUNCATED AT 400 WORDS)


1978 ◽  
Vol 1 (16) ◽  
pp. 87 ◽  
Author(s):  
P. Nielsen ◽  
I.A. Svensen ◽  
C. Staub

A theoretical model is developed for the movement of loose sediments in oscillatory flow with or without a net current. In the present formulation the model is two-dimensional, but may readily be extended to three dimensions. It is assumed that all movement of sediments occurs in suspension, and exact analytical solutions are given for the time variation of the concentration profile, the instantaneous sediment flux and the net flux of sediment over a wave period. The model requires as empirical input a diffusion coefficient e and pick-up function p(t), for which experimental data are presented. Two examples are discussed in detail, illustrating important aspects of the onshore-offshore sediment motion.


1998 ◽  
Vol 356 ◽  
pp. 149-153 ◽  
Author(s):  
MICHAEL S. LONGUET-HIGGINS

For two-dimensional flow there is a simple relation between the vorticity at a stress-free surface and the surface curvature. In this note the relation is generalized to flow in three dimensions. It is shown that in addition to a component of vorticity perpendicular to the flow there is also a component parallel to the direction of flow. The latter vanishes only at an umbilical point or when the flow is in one of the two principal directions of curvature.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ahmad Falahatpisheh ◽  
Arash Kheradvar

Introduction: The two-dimensional (2D) echocardiographic particle image velocimetry technique that was introduced in 2010 received much attention in clinical cardiology. Cardiac flow visualization based on contrast echocardiography results in images with high temporal resolution that are obtainable at relatively low cost. This makes it an ideal diagnostic and follow-up tool for routine clinical use. However, cardiac flow in a cardiac cycle is multidirectional with a tendency to spin in three dimensions rather than two-dimensional curl. Here, for the first time, we introduce a volumetric echocardiographic particle image velocimetry technique that robustly acquires the flow in three spatial dimensions and in time: Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV). Methods: V-Echo-PIV technique utilizes matrix array 3D ultrasound probes to capture the flow seeded with an ultrasound contrast agent (Definity). For this feasibility study, we used a pulse duplicator with a silicone ventricular sac along with bioprosthetic heart valves at the inlet and outlet. GE Vivid E9 system with an Active Matrix 4D Volume Phased Array probe at 30 Hz was used to capture the flow data (Figure 1). Results: The 3D particle field was obtained with excellent spatial resolution without significant noise (Figure 1). 3D velocity field was successfully captured for multiple cardiac cycles. Flow features are shown in Figure 2 where the velocity vectors in two selected slices and some streamlines in 3D space are depicted. Conclusions: We report successful completion of the feasibility studies for volumetric echocardiographic PIV in an LV phantom. The small-scale features of flow in the LV phantom were revealed by this technique. Validation and human studies are currently in progress.


Sign in / Sign up

Export Citation Format

Share Document