scholarly journals Mechanical Degradation of Different Classes of Composite Resins Aged in Water, Air, and Oil

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Weber Adad Ricci ◽  
Priscila Alfano ◽  
Saulo Pamato ◽  
Carlos Alberto dos Santos Cruz ◽  
Jefferson Ricardo Pereira

A significant deterioration of the properties can drastically compromise the survival rate of restorative materials. The aim of this study was to assess flexural strength and hardness of three composite classes: hybrid composite resin (HCR), nanoparticulate composite resin (NCR), and silorane-based composite resin (SBCR). One hundred specimens were prepared for hardness testing by using a split metallic mold measuring 10 mm in diameter and 2 mm deep. Twenty specimens were prepared for each restorative material, randomly assigned for storage in air, distilled water, or mineral oil. After intervals of 24 hours, 30, 60, 90, and 120 days, hardness and flexural strength tests were initially compared in two levels: “storage medium” and “time” within each material group. A two-way analysis of variance was performed (p<0.05) on the variables “material” and “storage time” (p<0.05). The HCR showed to be stable with regard to the evaluation of flexural strength and hardness (p<0.05). A significant reduction occurs for the NCR in comparison to the other groups (p<0.05). The NCR presented the lowest values of hardness and flexural strength kept on water over time. The characteristics of material showed a strong influence on the decrease of the mechanical properties analyzed.

2014 ◽  
Vol 25 (4) ◽  
pp. 327-331 ◽  
Author(s):  
Gisele Rodrigues da Silva ◽  
Isabela Sousa Araújo ◽  
Rodrigo Dantas Pereira ◽  
Bruno de Castro Ferreira Barreto ◽  
Célio Jesus do Prado ◽  
...  

The aim of this study was to evaluate the microtensile bond strength (µTBS) of two substrates (enamel and dentin) considering two study factors: type of composite resin [methacrylate-based (Filtek Supreme) or silorane-based (Filtek LS)] and aging time (24 h or 3 months). Twenty human molars were selected and divided into 2 groups (n=10) considering two dental substrates, enamel or dentin. The enamel and dentin of each tooth was divided into two halves separated by a glass plate. Each tooth was restored using both tested composite resins following the manufacturer's instructions. The samples were sectioned, producing 4 sticks for each composite resin. Half of them were tested after 24 h and half after 3 months. µTBS testing was carried out at 0.05 mm/s. Data were analyzed by three-way ANOVA and Tukey's HSD tests at α=0.05. Significant differences between composite resins and substrates were found (p<0.05), but no statistically significant difference was found for aging time and interactions among study factors. The methacrylate-based resin showed higher µTBS than the silorane-based resin. The µTBS for enamel was significantly higher than for dentin, irrespective of the composite resin and storage time. Three months of storage was not sufficient time to cause degradation of the bonding interaction of either of the composite resins to enamel and dentin.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4128
Author(s):  
Olaf K. Horbańczuk ◽  
Małgorzata Moczkowska ◽  
Joanna Marchewka ◽  
Atanas G. Atanasov ◽  
Marcin A. Kurek

Ostrich meat is a high-quality dietetic product, however, it is very sensitive to deterioration during storage. The aim of this study was to assess the effect of packaging systems on the fatty acid (FA) profiles in ostrich meat during refrigerated storage. The systems were: Vacuum packaging (VP) and modified atmosphere packaging (MAP) in two combinations of gases: MAP1 (40% O2/40% CO2/20% N2) and MAP2 (60% O2/30% CO2/10% N2). Samples were taken from the M. ilifibularis (IF) muscles of eight ostriches in each treatment group. The packs were stored in a refrigerator at 2 °C and analyzed at 0, 4, 8, 12 and 16 days. The packaging conditions and storage time had an impact on the concentration of bioactive compounds such as polyunsaturated fatty acids (PUFA), including n-3 such as C18:3, C20:5 (EPA) and C22:6 (DHA). The least changes in composition of n-3 and the sum of PUFA were recorded in ostrich meat packaged in vacuum, followed by that packaged using MAP1 and MAP2. The sum of n-6 PUFAs decreased significantly by 2.1% for MAP2, and only by 0.7% for vacuum packaging as the experiment progressed. A significant deterioration of these compounds was observed in all package systems, especially from day 12 until day 16 of storage.


2006 ◽  
Vol 20 (2) ◽  
pp. 143-147 ◽  
Author(s):  
Leonardo Eloy Rodrigues Filho ◽  
Luis Antônio dos Santos Burger ◽  
Silvia Kenshima ◽  
José Roberto de Oliveira Bauer ◽  
Igor Studart Medeiros ◽  
...  

The present study evaluated the flexural strength of three composite resins recommended for direct esthetic restorations: a polyacid modified composite (Dyract AP), a unimodal composite resin (Filtek Z250) and a hybrid composite resin (Point 4). The variation factors, apart from the type of composite resin, were the light activation method and the water storage period. The composite resins were light-cured in continuous mode (40 s, 500 mW/cm²) or in ramp mode (0-800 mW/cm² for 10 s followed by 30 s at 800 mW/cm²) and stored for 24 hours or 30 days in distilled water at 37°C. The data were analyzed by ANOVA and Tukey test for multiple comparisons (alpha = 0.05). The composite resin Z250 presented the highest mean flexural strength (166.74 MPa) and Dyract AP presented the lowest one (129.76 MPa). The storage for 30 days decreased the flexural strength in ramp mode (24 h: 156.64 MPa; 30 days: 135.58 MPa). The light activation method alone did not lead to different flexural strength values.


2021 ◽  
Vol 20 ◽  
pp. e213981
Author(s):  
Fariba Motevasselian ◽  
Hamid Kermanshah ◽  
Ebrahim Rasoulkhani ◽  
Mutlu Özcan

Aim: To compare the microleakage of Cention N, a subgroup of composite resins with a resin-modified glass ionomer (RMGI) and a composite resin. Methods: Class V cavities were prepared on the buccal and lingual surfaces of 46 extracted human molars. The teeth were randomly assigned to four groups. Group A: Tetric N-Bond etch-and-rinse adhesive and Tetric N-Ceram nanohybrid composite resin, group B: Cention N without adhesive, group C: Cention N with adhesive, and group D: Fuji II LC RMGI. The teeth were thermocycled between 5°-55°C (×10,000). The teeth were coated with two layers of nail vanish except for 1 mm around the restoration margins, and immersed in 2% methylene blue (37°C, 24 h) before buccolingual sectioning to evaluate dye penetration under a stereomicroscope (×20). The data were analyzed by the Kruskal-Wallis and Wilcoxon tests (α=0.05). Results: Type of material and restoration margin had significant effects on the microleakage (p<0.05). Dentin margins showed a higher leakage score in all groups. Cention N and RMGI groups showed significant differences at the enamel margin (p=0.025, p=0.011), and for the latter group the scores were higher. No significant difference was found at the dentin margins between the materials except between Cention N with adhesive and RMGI (p=0.031). Conclusion: Microleakage was evident in all three restorative materials. Cention N groups showed similar microleakage scores to the composite resin and displayed lower microleakage scores compared with RMGI.


2001 ◽  
Vol 29 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Ulf Örtengren ◽  
Fredrik Andersson ◽  
Ulrika Elgh ◽  
Björn Terselius ◽  
Stig Karlsson

2019 ◽  
Vol 45 (4) ◽  
pp. 387-395
Author(s):  
AA Abdulmajeed ◽  
TE Donovan ◽  
R Cook ◽  
TA Sulaiman

Clinical Relevance Bulk-fill composite resins may have comparable mechanical properties to conventional composite resin. Preheating does not reduce the mechanical properties of composite resins. SUMMARY Statement of Problem: Bulk-fill composite resins are increasingly used for direct restorations. Preheating high-viscosity versions of these composites has been advocated to increase flowability and adaptability. It is not known what changes preheating may cause on the mechanical properties of these composite resins. Moreover, the mechanical properties of these composites after mastication simulation is lacking. Purpose: The purpose of this study was to evaluate the effect of fatiguing and preheating on the mechanical properties of bulk-fill composite resin in comparison to its conventional counterpart. Methods and Materials: One hundred eighty specimens of Filtek One Bulk Fill Restorative (FOBR; Bulk-Fill, 3M ESPE) and Filtek Supreme Ultra (FSU; Conventional, 3M ESPE) were prepared for each of the following tests: fracture toughness (International Organization for Standardization, ISO 6872), diametral tensile strength (No. 27 of ANSI/ADA), flexural strength, and elastic modulus (ISO Standard 4049). Specimens in the preheated group were heated to 68°C for 10 minutes and in the fatiguing group were cyclically loaded and thermocycled for 600,000 cycles and then tested. Two-/one-way analysis of variance followed by Tukey Honest Significant Difference (HSD) post hoc test was used to analyze data for statistical significance (α=0.05). Results: Preheating and fatiguing had a significant effect on the properties of both FSU and FOBR. Fracture toughness increased for FOBR specimens when preheated and decreased when fatigued (p=0.016). FOBR had higher fracture toughness value than FSU. Diametral tensile strength decreased significantly after fatiguing for FSU (p=0.0001). FOBR had a lower diametral tensile strength baseline value compared with FSU (p=0.004). Fatiguing significantly reduced the flexural strength of both FSU and FOBR (p=0.011). Preheating had no effect on the flexural strength of either FSU or FOBR. Preheating and fatiguing significantly decreased the elastic modulus of both composite resins equally (p&gt;0.05). Conclusions: Preheating and fatiguing influenced the mechanical properties of composite resins. Both composites displayed similar mechanical properties. Preheating did not yield a major negative effect on their mechanical properties; the clinical implications are yet to be determined.


2014 ◽  
Vol 22 (6) ◽  
pp. 496-501 ◽  
Author(s):  
Juliana dos Reis DERCELI ◽  
Laiza Maria Grassi FAIS ◽  
Lígia Antunes Pereira PINELLI

Author(s):  
Pedro Rogério Camargos Pennisi ◽  
Pedro Urquiza Jayme Silva ◽  
Fábio Scorsolini Valverde ◽  
Ticiane Campos Clemente ◽  
Vitória Cerri ◽  
...  

Abstract Objectives The low resistance to fracture has limited the use of indirect composite resins for dental restorations, particularly in regions that are exposed to strong occlusal forces. To overcome this issue, different types of reinforcement for composites have been proposed, one of which is carbon nanotubes (CNTs). The aim of this study was to evaluate the flexural resistance of one commercial indirect composite resin (Sinfony, 3M/ESPE) after incorporation of single-wall carbon nanotubes (SWCNTs; Sigma–Aldrich, Inc., St. Louis, Missouri, United States) with or without the silanization form. Materials and Methods Specimens of composite resin were fabricated in a Teflon mold. The composite resin was prepared according to the manufacturer’s instructions (n = 10 for each group), with SWCNTs in three concentrations. Statistical Analysis The SWCNTs and SWCNT/SiO2-ATES specimens were evaluated by transmission electron microscopy, and a flexural test was conducted according to the ISO 4049/2009. Flexural strength data in MPa were submitted to one-way ANOVA following Tukey (p < 0.05). Results The SWCNTs did not improve the flexural strength of indirect composite resin when compared with the control, independent of the concentration added (p > 0.05). However, when SWCNTs and SWCNTs/SiO2-ATES were compared, the SWCNTs/SiO2-ATES showed higher values than the three concentrations of SWCNTs (p < 0.05). Conclusion The silanization process improves the SWCNTs strength proprieties, but the modification of chemical bonding between SWCNT and SWCNT/SiO2-ATES modified resins, in different concentrations, did not improve the composite resin flexural strength.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Ragia M. Taher ◽  
Lamiaa M. Moharam ◽  
Amin E. Amin ◽  
Mohamed H. Zaazou ◽  
Farid S. El-Askary ◽  
...  

Abstract Background This study was conducted to evaluate the effect of radiation exposure and storage time on the degree of conversion (DC%) and flexural strength (FS) of three different resin composites. In total, 90 disk-shaped, and 360 rod-shaped composite specimens were prepared to evaluate the DC% and FS, respectively. Specimens were divided into 18 groups (DC%: n = 5 and FS: n = 20) according to the three experimental factors of the study: 1—Radiation (no-exposure and exposure), 2—Resin composite material (Herculite XRV Ultra, Z250 XT and Grandio), and 3—Storage time (24 h in distilled water, 3-m and 6-m in 70% ethanol). Fourier transform infrared spectrometer (FTIR) was used to determine the DC%. For FS, the specimens were subjected to a three-point bending test at 1 mm/min crosshead speed. Data were analyzed using three-way ANOVA/Tukey HSD test. Significant level was set at P = 0.05. Results For DC%, there was no significant difference between no-radiation exposure and radiation exposure (P > 0.05). Herculite XRV Ultra revealed the highest statistically significant DC% (P < 0.05). The 24-h storage time revealed the least significant DC% (P < 0.05). For FS, radiation exposure showed a statistically significant higher value compared to no-radiation exposure (P < 0.05). Herculite XRV Ultra showed the least FS value (P < 0.05). The 24-h storage time showed the highest significant value (P < 0.05). Conclusions Radiation exposure has no significant impact on the DC% of the different resin composites, but it has a significant positive effect on the FS. Storage time had a significant effect on both DC% and FS.


Sign in / Sign up

Export Citation Format

Share Document