scholarly journals Recommendation Based on Users’ Long-Term and Short-Term Interests with Attention

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Qiaoqiao Tan ◽  
Fang’ai Liu

Recommendations based on user behavior sequences are becoming more and more common. Some studies consider user behavior sequences as interests directly, ignoring the mining and representation of implicit features. However, user behaviors contain a lot of information, such as consumption habits and dynamic preferences. In order to better locate user interests, this paper proposes a Bi-GRU neural network with attention to model user’s long-term historical preferences and short-term consumption motivations. First, a Bi-GRU network is established to solve the long-term dependence problem in sequences, and attention mechanism is introduced to capture user interest changes related to the target item. Then, user’s short-term interaction trajectory based on self-attention is modeled to distinguish the importance of each potential feature. Finally, combined with long-term and short-term interests, the next behavior is predicted. We conducted extensive experiments on Amazon and MovieLens datasets. The experimental results demonstrate that the proposed model outperforms current state-of-the-art models in Recall and NDCG indicators. Especially in MovieLens dataset, compared with other RNN-based models, our proposed model improved at least 2.32% at Recall@20, which verifies the effectiveness of modeling long-term and short-term interest of users, respectively.

2020 ◽  
Vol 10 (11) ◽  
pp. 3712
Author(s):  
Dongjing Shan ◽  
Xiongwei Zhang ◽  
Wenhua Shi ◽  
Li Li

Regarding the sequence learning of neural networks, there exists a problem of how to capture long-term dependencies and alleviate the gradient vanishing phenomenon. To manage this problem, we proposed a neural network with random connections via a scheme of a neural architecture search. First, a dense network was designed and trained to construct a search space, and then another network was generated by random sampling in the space, whose skip connections could transmit information directly over multiple periods and capture long-term dependencies more efficiently. Moreover, we devised a novel cell structure that required less memory and computational power than the structures of long short-term memories (LSTMs), and finally, we performed a special initialization scheme on the cell parameters, which could permit unhindered gradient propagation on the time axis at the beginning of training. In the experiments, we evaluated four sequential tasks: adding, copying, frequency discrimination, and image classification; we also adopted several state-of-the-art methods for comparison. The experimental results demonstrated that our proposed model achieved the best performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chenquan Gan ◽  
Xiaoke Li ◽  
Lisha Wang ◽  
Zufan Zhang

This paper aims to explore the impact of user behavior on information diffusion in D2D (Device-to-Device) communications. A discrete dynamical model, which combines network metrics and user behaviors, including social relationship, user influence, and interest, is proposed and analyzed. Specifically, combined with social tie and user interest, the success rate of data dissemination between D2D users is described, and the interaction factor, user influence, and stability factor are also defined. Furthermore, the state transition process of user is depicted by a discrete-time Markov chain, and global stability analysis of the proposed model is also performed. Finally, some experiments are examined to illustrate the main results and effectiveness of the proposed model.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 861 ◽  
Author(s):  
Xiangdong Ran ◽  
Zhiguang Shan ◽  
Yufei Fang ◽  
Chuang Lin

Traffic prediction is based on modeling the complex non-linear spatiotemporal traffic dynamics in road network. In recent years, Long Short-Term Memory has been applied to traffic prediction, achieving better performance. The existing Long Short-Term Memory methods for traffic prediction have two drawbacks: they do not use the departure time through the links for traffic prediction, and the way of modeling long-term dependence in time series is not direct in terms of traffic prediction. Attention mechanism is implemented by constructing a neural network according to its task and has recently demonstrated success in a wide range of tasks. In this paper, we propose an Long Short-Term Memory-based method with attention mechanism for travel time prediction. We present the proposed model in a tree structure. The proposed model substitutes a tree structure with attention mechanism for the unfold way of standard Long Short-Term Memory to construct the depth of Long Short-Term Memory and modeling long-term dependence. The attention mechanism is over the output layer of each Long Short-Term Memory unit. The departure time is used as the aspect of the attention mechanism and the attention mechanism integrates departure time into the proposed model. We use AdaGrad method for training the proposed model. Based on the datasets provided by Highways England, the experimental results show that the proposed model can achieve better accuracy than the Long Short-Term Memory and other baseline methods. The case study suggests that the departure time is effectively employed by using attention mechanism.


Author(s):  
Tao Gui ◽  
Qi Zhang ◽  
Lujun Zhao ◽  
Yaosong Lin ◽  
Minlong Peng ◽  
...  

In recent years, long short-term memory (LSTM) has been successfully used to model sequential data of variable length. However, LSTM can still experience difficulty in capturing long-term dependencies. In this work, we tried to alleviate this problem by introducing a dynamic skip connection, which can learn to directly connect two dependent words. Since there is no dependency information in the training data, we propose a novel reinforcement learning-based method to model the dependency relationship and connect dependent words. The proposed model computes the recurrent transition functions based on the skip connections, which provides a dynamic skipping advantage over RNNs that always tackle entire sentences sequentially. Our experimental results on three natural language processing tasks demonstrate that the proposed method can achieve better performance than existing methods. In the number prediction experiment, the proposed model outperformed LSTM with respect to accuracy by nearly 20%.


2021 ◽  
Vol 10 (45) ◽  
pp. 230-241
Author(s):  
Victoriia Bilyk ◽  
Olena Kolomytseva ◽  
Olha Myshkovych ◽  
Nataliia Tymoshyk ◽  
Denis Shcherbatykh

Evaluation of sensitivity of commercial enterprises to organizational changes should be made in terms of short-term planning for which it is important to ensure the financial results, as well as in terms of long-term planning, which is important for non-monetary indicators of development effectiveness. To solve this problem, the paper is designed model sensitivity Descriptive indicators of industrial enterprises to organizational changes, reflecting monetary and non-monetary effects of organizational change. The authors determined that the proposed model allows for the analysis of organizational change with regard to their impact on monetary and non-monetary efficiency. This paper contributes to the theory and practice at the border to ensure a balance between short-term and long-term development of industrial enterprises. Convincingly demonstrated the possibility of using research results in practice.


2020 ◽  
Vol 34 (01) ◽  
pp. 214-221 ◽  
Author(s):  
Ke Sun ◽  
Tieyun Qian ◽  
Tong Chen ◽  
Yile Liang ◽  
Quoc Viet Hung Nguyen ◽  
...  

Point-of-Interest (POI) recommendation has been a trending research topic as it generates personalized suggestions on facilities for users from a large number of candidate venues. Since users' check-in records can be viewed as a long sequence, methods based on recurrent neural networks (RNNs) have recently shown promising applicability for this task. However, existing RNN-based methods either neglect users' long-term preferences or overlook the geographical relations among recently visited POIs when modeling users' short-term preferences, thus making the recommendation results unreliable. To address the above limitations, we propose a novel method named Long- and Short-Term Preference Modeling (LSTPM) for next-POI recommendation. In particular, the proposed model consists of a nonlocal network for long-term preference modeling and a geo-dilated RNN for short-term preference learning. Extensive experiments on two real-world datasets demonstrate that our model yields significant improvements over the state-of-the-art methods.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4804
Author(s):  
Rui Cao ◽  
Jianjian Shen ◽  
Chuntian Cheng ◽  
Jian Wang

The increasing peak-to-valley load difference in China pose a challenge to long-distance and large-capacity hydropower transmission via high-voltage direct current (HVDC) lines. Considering the peak shaving demands of load centers, an optimization model that maximizes the expected power generation revenue is proposed here for the long-term operation of an interprovincial hydropower plant. A simulation-based method was utilized to explore the relationships between long-term power generation and short-term peak shaving revenue in the model. This method generated representative daily load scenarios via cluster analysis and approximated the real-time electricity price of each load profile with the time-of-use price strategy. A mixed-integer linear programming model with HVDC transmission constraints was then established to obtain moving average (MA) price curves that bridged two time-coupled operations. The MA price curves were finally incorporated into the long-term optimization model to determine monthly generation schedules, and the inflow uncertainty was addressed by discretized inflow scenarios. The proposed model was evaluated based on the operation of the Xiluodu hydropower system in China during the drawdown season. The results revealed a trade-off between long-term energy production and short-term peak shaving revenue, and they demonstrated the revenue potential of interprovincial hydropower transmission while meeting peak shaving demands. A comparison with other long-term optimization methods demonstrated the effectiveness and reliability of the proposed model in maximizing power generation revenue.


2018 ◽  
Vol 29 (04) ◽  
pp. 1850036 ◽  
Author(s):  
Wanyu Chen ◽  
Zepeng Hao ◽  
Taihua Shao ◽  
Honghui Chen

Query suggestions help users refine their queries after they input an initial query. Previous work mainly concentrated on similarity-based and context-based query suggestion approaches. However, models that focus on adapting to a specific user (personalization) can help to improve the probability of the user being satisfied. In this paper, we propose a personalized query suggestion model based on users’ search behavior (UB model), where we inject relevance between queries and users’ search behavior into a basic probabilistic model. For the relevance between queries, we consider their semantical similarity and co-occurrence which indicates the behavior information from other users in web search. Regarding the current user’s preference to a query, we combine the user’s short-term and long-term search behavior in a linear fashion and deal with the data sparse problem with Bayesian probabilistic matrix factorization (BPMF). In particular, we also investigate the impact of different personalization strategies (the combination of the user’s short-term and long-term search behavior) on the performance of query suggestion reranking. We quantify the improvement of our proposed UB model against a state-of-the-art baseline using the public AOL query logs and show that it beats the baseline in terms of metrics used in query suggestion reranking. The experimental results show that: (i) for personalized ranking, users’ behavioral information helps to improve query suggestion effectiveness; and (ii) given a query, merging information inferred from the short-term and long-term search behavior of a particular user can result in a better performance than both plain approaches.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoying Tan ◽  
Yuchun Guo ◽  
Mehmet A. Orgun ◽  
Liyin Xue ◽  
Yishuai Chen

With the surging demand on high-quality mobile video services and the unabated development of new network technology, including fog computing, there is a need for a generalized quality of user experience (QoE) model that could provide insight for various network optimization designs. A good QoE, especially when measured as engagement, is an important optimization goal for investors and advertisers. Therefore, many works have focused on understanding how the factors, especially quality of service (QoS) factors, impact user engagement. However, the divergence of user interest is usually ignored or deliberatively decoupled from QoS and/or other objective factors. With an increasing trend towards personalization applications, it is necessary as well as feasible to consider user interest to satisfy aesthetic and personal needs of users when optimizing user engagement. We first propose an Extraction-Inference (E-I) algorithm to estimate the user interest from easily obtained user behaviors. Based on our empirical analysis on a large-scale dataset, we then build a QoS and user Interest based Engagement (QI-E) regression model. Through experiments on our dataset, we demonstrate that the proposed model reaches an improvement in accuracy by 9.99% over the baseline model which only considers QoS factors. The proposed model has potential for designing QoE-oriented scheduling strategies in various network scenarios, especially in the fog computing context.


Sign in / Sign up

Export Citation Format

Share Document