scholarly journals An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jian Kui Feng ◽  
Jing Jin ◽  
Ian Daly ◽  
Jiale Zhou ◽  
Yugang Niu ◽  
...  

Background. Due to the redundant information contained in multichannel electroencephalogram (EEG) signals, the classification accuracy of brain-computer interface (BCI) systems may deteriorate to a large extent. Channel selection methods can help to remove task-independent electroencephalogram (EEG) signals and hence improve the performance of BCI systems. However, in different frequency bands, brain areas associated with motor imagery are not exactly the same, which will result in the inability of traditional channel selection methods to extract effective EEG features. New Method. To address the above problem, this paper proposes a novel method based on common spatial pattern- (CSP-) rank channel selection for multifrequency band EEG (CSP-R-MF). It combines the multiband signal decomposition filtering and the CSP-rank channel selection methods to select significant channels, and then linear discriminant analysis (LDA) was used to calculate the classification accuracy. Results. The results showed that our proposed CSP-R-MF method could significantly improve the average classification accuracy compared with the CSP-rank channel selection method.

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7309
Author(s):  
Junhyuk Choi ◽  
Keun Tae Kim ◽  
Ji Hyeok Jeong ◽  
Laehyun Kim ◽  
Song Joo Lee ◽  
...  

This study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF) selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton. Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects successfully completed a gait task by wearing the lower-limb exoskeleton through the developed real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual smartwatch controller. The developed system can potentially be benefit people with neurological disorders who may have difficulties operating manual control.


2016 ◽  
Vol 27 (02) ◽  
pp. 1650032 ◽  
Author(s):  
Yu Zhang ◽  
Yu Wang ◽  
Jing Jin ◽  
Xingyu Wang

Effective common spatial pattern (CSP) feature extraction for motor imagery (MI) electroencephalogram (EEG) recordings usually depends on the filter band selection to a large extent. Subband optimization has been suggested to enhance classification accuracy of MI. Accordingly, this study introduces a new method that implements sparse Bayesian learning of frequency bands (named SBLFB) from EEG for MI classification. CSP features are extracted on a set of signals that are generated by a filter bank with multiple overlapping subbands from raw EEG data. Sparse Bayesian learning is then exploited to implement selection of significant features with a linear discriminant criterion for classification. The effectiveness of SBLFB is demonstrated on the BCI Competition IV IIb dataset, in comparison with several other competing methods. Experimental results indicate that the SBLFB method is promising for development of an effective classifier to improve MI classification.


2013 ◽  
Vol 459 ◽  
pp. 228-231 ◽  
Author(s):  
Hao Yang ◽  
Song Wu

Electroencephalogram (EEG) is generally used in Brain-Computer Interface (BCI) applications to measure the brain signals. However, the multichannel EEG signals characterized by unrelated and redundant features will deteriorate the classification accuracy. This paper presents a method based on common spatial pattern (CSP) for feature extraction and support vector machine with genetic algorithm (SVM-GA) as a classifier, the GA is used to optimize the kernel parameters setting. The proposed algorithm is performed on data set Iva of BCI Competition III. Results show that the proposed method outperforms the conventional linear discriminant analysis (LDA) in average classification performance.


2021 ◽  
Vol 12 (2) ◽  
pp. 67-77
Author(s):  
Umme Farhana ◽  
Mst Jannatul Ferdous

In brain computer interface (BCI) systems, the electroencephalography (EEG) signals give a pathway to a motor disabled person to communicate outside using the brain signal and a computer. EEG signals of different motor imagery (MI) movements can be differentiated using an effective classification technique to aid a motor disabled patient. The purpose of this paper is to classify two different types of MI movement tasks, movement of the left hand and movement of the right foot EEG signals accurately. For this purpose we have used a publicly available dataset. Since the feature extraction for classification is an important task, so we have used popular common spatial pattern (CSP) method for spatial feature extraction. Two different machine learning classifiers named support vector machine (SVM) and K-nearest neighbor (KNN) have been used to verify the proposed method. We got the highest average results 95.55%, 98.73% and 92.38% in case of SVM and 93.5%, 98.73% and 90.15% in case of KNN for classification accuracy, sensitivity, and specificity, respectively when a Butterworth band-pass filter passed through [10–30] Hz. On the other hand accuracy came to 89.4% in [10-30] Hz when applying CSP for feature extraction and fisher linear discriminant analysis (FLDA) for classification on this dataset earlier. Journal of Engineering Science 12(2), 2021, 67-77


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Rensong Liu ◽  
Zhiwen Zhang ◽  
Feng Duan ◽  
Xin Zhou ◽  
Zixuan Meng

Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


2019 ◽  
Vol 9 (11) ◽  
pp. 326 ◽  
Author(s):  
Hong Zeng ◽  
Zhenhua Wu ◽  
Jiaming Zhang ◽  
Chen Yang ◽  
Hua Zhang ◽  
...  

Deep learning (DL) methods have been used increasingly widely, such as in the fields of speech and image recognition. However, how to design an appropriate DL model to accurately and efficiently classify electroencephalogram (EEG) signals is still a challenge, mainly because EEG signals are characterized by significant differences between two different subjects or vary over time within a single subject, non-stability, strong randomness, low signal-to-noise ratio. SincNet is an efficient classifier for speaker recognition, but it has some drawbacks in dealing with EEG signals classification. In this paper, we improve and propose a SincNet-based classifier, SincNet-R, which consists of three convolutional layers, and three deep neural network (DNN) layers. We then make use of SincNet-R to test the classification accuracy and robustness by emotional EEG signals. The comparable results with original SincNet model and other traditional classifiers such as CNN, LSTM and SVM, show that our proposed SincNet-R model has higher classification accuracy and better algorithm robustness.


Author(s):  
Pasquale Arpaia ◽  
Francesco Donnarumma ◽  
Antonio Esposito ◽  
Marco Parvis

A method for selecting electroencephalographic (EEG) signals in motor imagery-based brain-computer interfaces (MI-BCI) is proposed for enhancing the online interoperability and portability of BCI systems, as well as user comfort. The attempt is also to reduce variability and noise of MI-BCI, which could be affected by a large number of EEG channels. The relation between selected channels and MI-BCI performance is therefore analyzed. The proposed method is able to select acquisition channels common to all subjects, while achieving a performance compatible with the use of all the channels. Results are reported with reference to a standard benchmark dataset, the BCI competition IV dataset 2a. They prove that a performance compatible with the best state-of-the-art approaches can be achieved, while adopting a significantly smaller number of channels, both in two and in four tasks classification. In particular, classification accuracy is about 77–83% in binary classification with down to 6 EEG channels, and above 60% for the four-classes case when 10 channels are employed. This gives a contribution in optimizing the EEG measurement while developing non-invasive and wearable MI-based brain-computer interfaces.


Sign in / Sign up

Export Citation Format

Share Document