scholarly journals Uniaxial Compression Creep Relaxation and Grading of Coal Samples via Tests on the Progressive Failure Characteristics

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zuqiang Xiong ◽  
Changsheng Song ◽  
Chengdong Su ◽  
Xiaolei Wang ◽  
Cheng Wang ◽  
...  

An RMT-150B electrohydraulic servo testing system was used to perform uniaxial compression and uniaxial grading relaxation (creep) tests. The deformation, strength, and failure characteristics of the progressive failure process of coal samples under three loading modes were analyzed. The analysis results show that the prepeak stress-strain curve of the coal samples and the load relationships are not clear and that the whole compression process of coal still showed compression, elastic, yielding, and failure stages. The local stress drop characteristics during our relaxation creep grading tests showed no clear peak value and showed a yield curve with the shape of a conventional single plateau. The values of the mechanical parameters of axial compression were significantly higher than those obtained in the grade relaxation (creep) tests, which showed the mechanical parameters of coal samples with aging characteristics. In the relaxation (creep) tests, when the stress ratio was less than 70%, the relaxation (creep) characteristics of the sample were not clear. When the ratio of stress relaxation (creep) was more than 70% in the relaxation (creep) tests during displacement (stress) with a constant relaxation (creep) over the duration of the test, the evolution, development, and convergence of microcracks in the coal samples were observed. Relaxation (creep) stress was higher, failure duration was shorter, and the duration of failure was longer. For fully mechanized coal faces, increasing the support resistance and timely moving the support after coal cutting may prevent rib spalling accidents by reducing coal stress and exposure time in the front of the working face. Additionally, routine uniaxial compressive failures showed a simple form, having a clear tension-shear dual rupture surface. The staged relaxation creep failure testing of coal is more complex. The entire coal samples were divided into many thin-sheet debris via gradual collapse and shedding, and the number of cracks increased significantly, showing evident lateral expansion characteristics that are similar to the rib spalling characteristics in high coal mining working faces.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zuoqing Bi ◽  
Han Liang ◽  
Qianjia Hui

The rock burst proneness of coal is closely related to the coal mass structure. Therefore, the initial crack distribution of high burst proneness coal, its fracture development, and failure process under loading conditions are of great significance for the prediction of rock burst. In this study, high burst proneness coal is used to prepare experiment samples. The surface cracks of the samples are identified and recorded. The internal crack of the sample is detected by nuclear magnetic resonance (NMR) technology to determine the crack ratio of each sample. Then, 3D-CAD technology is used to restore the initial crack of the samples. Uniaxial compression test is carried out, and AE properties are recorded in the test. The stress-strain curve, the distribution of the fractural points within the sample at different stress states, and the relationship between ring count and stress are obtained. Results show that the stress-strain curves of high burst proneness coal are almost linear, to which the stress-ring count curves are similar. The distributions of fractural points in different bearing states show that the fracture points emerge in the later load stage and finally penetrate to form macrofracture, resulting in sample failure. This study reveals the initial crack distribution of coal with high burst proneness and the fracture development under bearing conditions, which provides a theoretical basis for the prediction technology of rock burst and technical support for the research of coal structure.


1978 ◽  
Vol 100 (4) ◽  
pp. 229-234 ◽  
Author(s):  
D. G. Ellis

Creep tests were performed on rat tail tendons at each of six temperatures: 25, 30, 35, 40, 45, and 50°C. It was found that the time interval from load application to rupture was related to the applied (specific) load and the temperature. Over the range 25° to 45°C this relation was found to be reasonably approximated by a Tobolsky-Eyring rate equation, if a squared term in specific load was added to the numerator of the exponent. Deviation of the 50°C data from this equation was hypothesized to be associated with incipient “melting”. The apparent activation energy for the failure process was sufficiently high to suggest that the creep failure of tendon involves the breaking of covalent bonds.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Feng Shen ◽  
Qing Zhang ◽  
Dan Huang

Peridynamics is a nonlocal formulation of continuum mechanics, which uses integral formulation rather than the spatial partial differential equations. The peridynamic approach avoids using any spatial derivatives, which arise naturally in the classical local theory. It has shown effectiveness and advantage in solving discontinuous problems at both macro- and microscales. In this paper, the peridynamic theory is used to analyze damage and progressive failure of concrete structures. A nonlocal peridynamic model for concrete columns under uniaxial compression is developed. Numerical example illustrates that cracks in a peridynamic body of concrete form spontaneously. The result of the example clarifies the unique advantage of modeling damage accumulation and progressive failure of concrete based on peridynamic theory. This study provides a new promising alternative for analyzing complicated discontinuity problems. Finally, some open problems and future research trends in peridynamics are discussed.


2019 ◽  
Vol 9 (6) ◽  
pp. 1195 ◽  
Author(s):  
Jinwen Bai ◽  
Guorui Feng ◽  
Zehua Wang ◽  
Shangyong Wang ◽  
Tingye Qi ◽  
...  

Overlapped residual coal pillars, together with the surrounding rock strata, play a combined bearing role in ultra-close multiple seam mining. Global stability of the whole bearing system is significant for the mining design, construction, and operation. Laboratory uniaxial compressive experiments for different kinds of sandwiched coal-rock specimens are carried out to investigate the progressive failure characteristics and mechanisms. Results show that: (1) The mechanical behavior of the sandwiched coal-rock specimen is mainly divided into four stages during the failure process. The response of the electrical resistivity and the evolution of acoustic emission (AE) energy are in good agreement with the mechanical behaviors at different stages, which are a reflection of the global failure characteristics of sandwiched specimens. (2) The distribution of AE events and the development of local strain can provide further insight into the local failure characteristics of coal elements or rock elements in sandwiched specimens. AE events are more likely to be generated in coal elements, which can propagate across coal-rock interfaces and induce damage to rock elements in a certain area. Similarly, the unbalanced deformation characteristics of coal elements and rock elements are apparently revealed in the progressive failure process. (3) Progressive failure of a sandwiched coal-rock specimen is closely associated with the interactions between the coal elements and rock elements. Initial failure usually appears in the coal elements. At this process, the recovery of elastic deformation and the output of strain energy are observed in the rock elements, which can accelerate the rupture of coal elements. In turn, the dynamic fracture energy generated in the rupture process of coal elements can propagate into rock elements and induce damage to rock elements a certain area. (4) The experimental results are helpful for maintaining the long-term stability of a sandwiched coal-rock system in ultra-close multiple seam mining.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2048 ◽  
Author(s):  
Yiwei Gao ◽  
Xuhua Ren ◽  
Jixun Zhang ◽  
Lingwei Zhong ◽  
Shuyang Yu ◽  
...  

In order to study the ductile deformation characteristics and failure process of plain concrete under uniaxial compression, this paper proposes a new constitutive model. The new model was used to fit and analyze the constitutive curve of concrete under uniaxial compressive under various degradation forms and was compared with the traditional constitutive models. Finally, the new model was used to quantitatively analyze and predict the stress–strain curve of concrete in different degradation periods of a set of freeze–thaw measured data. The results show that, compared with the traditional constitutive model, the new model is simple in form and has few parameters, and the numerical value of the parameter can reflect the ductile deformation capacity of concrete. The fitting curve of the new model has the highest fitting degree with the measured stress–strain curve of concrete, and the goodness of fit (R2) is also the largest. The new model is suitable for fitting the stress–strain curve of concrete under uniaxial compression under various deteriorating forms, and the degree of fit between the constitutive prediction curve and the measured curve is high. It can be seen from the fitting results of the new model parameters that the ductile deformation capacity of concrete decreases first and then increases slightly, which is inconsistent with the law of gradual deterioration of strength. There is a minimum moment of ductility deformation capacity of concrete (MDC). The MDC of O-C40 concrete is about 114 freeze–thaw cycles, and the MDC of O-C50 concrete is about 116 freeze–thaw cycles; the degree of fit between the constitutive prediction curve and the measured curve is high. We hope that the improvement mentioned offers valid reference to the study of ductile deformation characteristics and failure process of compressed concrete under different deterioration forms.


2014 ◽  
Vol 501-504 ◽  
pp. 244-247
Author(s):  
Yun Jie Zhang ◽  
Cheng Fan

In this paper,the mechanical properties of rock experiencing the variation of joint tip distance from sample end under uniaxial compression condition were simulated.Numerical simulation for the different rock sample in the uniaxial compression have been conducted to evaluate the effects of joint tip distance from sample end on the overall mechanical behaviour of jointed rock masses. It was done using the Rock Failure Process Analysis program RFPA2D. Numerically simulated stress-strain curve, peak stress, peak strain and failure patterns were compared with the corresponding physical tests. We found that specimen joint tip distance from sample end corresponding value (distance from the crack tip to the compression surface) linear relationship with the compressive strength values .Numerical simulations agree well with physical results, it is shown that RFPA2D is suitable for the analysis of joint tip distance from sample end effect on rock fracture.


Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1215 ◽  
Author(s):  
Yang Tang ◽  
Seisuke Okubo ◽  
Jiang Xu ◽  
Shoujian Peng

To investigate the progressive failure process of coal, a series of uniaxial and triaxial compression tests were conducted and a novel 3D digital image correlation instrument with six cameras combined with a special transparent pressure cell was used for the strain measurement. The stress thresholds of coal were obtained in uniaxial and triaxial compression. The energy evolution during the compression was discussed, coupled with the crack volumetric strain. The field strain of the whole specimen surface and crack propagation at different stress levels were described to study the progressive failure mechanism of coal. The average stress level of crack initiation and crack damage of coal in uniaxial compression are 43.75% and 63.03%, while that in the triaxial compression are 74.53% and 89.84%, respectively. The dissipation energy evolution corresponds to the crack volumetric strain, while the elastic energy release leads to flake ejection and coal failure. The crack evolution and localization of coal indicated the progressive failure process that the coal sample undergoes in tension failure in uniaxial compression and in tension-shear failure in triaxial compression. The findings of this study can serve as a reference to understand the failure process of coal and improve the stability and safety of mining engineering.


2019 ◽  
Vol 29 (6) ◽  
pp. 902-922 ◽  
Author(s):  
Junbao Wang ◽  
Qiang Zhang ◽  
Zhanping Song ◽  
Yuwei Zhang

To study the creep property of salt rock, uniaxial compression creep tests on salt rock specimens were carried out. The test results indicate that there is no steady creep of the salt rock used in this test in a strict sense. Even in the steady creep stage, the creep rate of salt rock changes continuously over time, but with a relatively smaller change range. When the axial stress does not exceed 9.5 MPa, the isochronous stress–strain curve of salt rock is approximately straight. While the axial stress exceeds 9.5 MPa, the isochronous stress–strain curve deflects to the strain axis, and the larger the axial stress, the more obvious the deflection. Thus, the long-term strength of the salt rock used in this test can be determined as 9.5 MPa. A mathematical expression for predicting the creep failure time of rock is proposed on the basis of assuming the change rule of rock strength over time conforms to the Usher function. Then starting from the variation in deformation modulus with respect to time in the creep process of salt rock, the elastic modulus of the damaged rock material is characterized by the deformation modulus, and the creep damage evolution equation of rock is established. Combined with the continuous damage mechanics theory, a new creep damage constitutive model for rock is proposed. The rationality of the model is verified using the uniaxial compression creep test results of salt rock. The results show that the new model can not only describe the attenuation and the steady creep of salt rock under low stress level, but also reflect the whole creep failure process under high stress level. The predicted curves under different axial stresses are all in good agreement with the test data.


2013 ◽  
Vol 477-478 ◽  
pp. 577-581
Author(s):  
Yue Long Yan ◽  
Tao Xu ◽  
Yun Jie Zhang ◽  
P.L.P. Wasantha

The mechanical properties of rock experiencing the variation of joint orientation under uniaxial compression condition were simulated in this paper. Numerical simulations on rock sample in uniaxial compression have been conducted to evaluate the effects of joint orientation on the overall mechanical behaviour of jointed rock masses. It was done using the Rock Failure Process Analysis program RFPA2D. Numerically simulated stress-strain curve, peak stress, peak strain and failure patterns were compared with the corresponding physical tests. Numerical simulations agree well with physical results, it is shown that RFPA2D is suitable for the analysis of joint orientation effect on rock fracture.


Sign in / Sign up

Export Citation Format

Share Document