scholarly journals How Convolutional Neural Networks Diagnose Plant Disease

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yosuke Toda ◽  
Fumio Okura

Deep learning with convolutional neural networks (CNNs) has achieved great success in the classification of various plant diseases. However, a limited number of studies have elucidated the process of inference, leaving it as an untouchable black box. Revealing the CNN to extract the learned feature as an interpretable form not only ensures its reliability but also enables the validation of the model authenticity and the training dataset by human intervention. In this study, a variety of neuron-wise and layer-wise visualization methods were applied using a CNN, trained with a publicly available plant disease image dataset. We showed that neural networks can capture the colors and textures of lesions specific to respective diseases upon diagnosis, which resembles human decision-making. While several visualization methods were used as they are, others had to be optimized to target a specific layer that fully captures the features to generate consequential outputs. Moreover, by interpreting the generated attention maps, we identified several layers that were not contributing to inference and removed such layers inside the network, decreasing the number of parameters by 75% without affecting the classification accuracy. The results provide an impetus for the CNN black box users in the field of plant science to better understand the diagnosis process and lead to further efficient use of deep learning for plant disease diagnosis.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yosuke Toda ◽  
Fumio Okura

Deep learning with convolutional neural networks (CNNs) has achieved great success in the classification of various plant diseases. However, a limited number of studies have elucidated the process of inference, leaving it as an untouchable black box. Revealing the CNN to extract the learned feature as an interpretable form not only ensures its reliability but also enables the validation of the model authenticity and the training dataset by human intervention. In this study, a variety of neuron-wise and layer-wise visualization methods were applied using a CNN, trained with a publicly available plant disease image dataset. We showed that neural networks can capture the colors and textures of lesions specific to respective diseases upon diagnosis, which resembles human decision-making. While several visualization methods were used as they are, others had to be optimized to target a specific layer that fully captures the features to generate consequential outputs. Moreover, by interpreting the generated attention maps, we identified several layers that were not contributing to inference and removed such layers inside the network, decreasing the number of parameters by 75% without affecting the classification accuracy. The results provide an impetus for the CNN black box users in the field of plant science to better understand the diagnosis process and lead to further efficient use of deep learning for plant disease diagnosis.


The vehicle classification and detecting its license plate are important tasks in intelligent security and transportation systems. However, theexisting methods of vehicle classification and detection are highly complex which provides coarse-grained outcomesbecause of underfitting or overfitting of the model. Due toadvanced accomplishmentsof the Deep Learning, it was efficiently implemented to image classification and detection of objects. This proposed paper come up with a new approach which makes use of convolutional neural networks concept in Deep Learning.It consists of two steps: i) vehicle classification ii) vehicle license plate recognition. Numerous classicmodules of neural networks hadbeen implemented in training and testing the vehicle classification and detection of license plate model, such as CNN (convolutional neural networks), TensorFlow, and Tesseract-OCR. The suggestedtechnique candetermine the vehicle type, number plate and other alternative dataeffectively. This model provides security and log details regarding vehicles by using AI Surveillance. It guides the surveillance operators and assists human resources. With the help of the original dataset (training) and enriched dataset (testing), this customized model(algorithm) can achieve best outcomewith a standard accuracy of around 97.32% inclassification and detection of vehicles. By enlarging the quantity of the training dataset, the loss function and mislearning rate declines progressively. Therefore, this proposedmodelwhich uses DeepLearning hadbetterperformance and flexibility. When compared to outstandingtechniques in the strategicImage datasets, this deep learning modelscan gethigher competitor outcomes. Eventually, the proposed system suggests modern methods for advancementof the customized model and forecasts the progressivegrowth of deep learningperformance in the explorationof artificial intelligence (AI) &machine learning (ML) techniques.


Author(s):  
Shradha Verma ◽  
Anuradha Chug ◽  
Amit Prakash Singh ◽  
Shubham Sharma ◽  
Puranjay Rajvanshi

With the increasing computational power, areas such as machine learning, image processing, deep learning, etc. have been extensively applied in agriculture. This chapter investigates the applications of the said areas and various prediction models in plant pathology for accurate classification, identification, and quantification of plant diseases. The authors aim to automate the plant disease identification process. To accomplish this objective, CNN has been utilized for image classification. Research shows that deep learning architectures outperform other machine learning tools significantly. To this effect, the authors have implemented and trained five CNN models, namely Inception ResNet v2, VGG16, VGG19, ResNet50, and Xception, on PlantVillage dataset for tomato leaf images. The authors analyzed 18,160 tomato leaf images spread across 10 class labels. After comparing their performance measures, ResNet50 proved to be the most accurate prediction tool. It was employed to create a mobile application to classify and identify tomato plant diseases successfully.


2021 ◽  
Vol 11 (20) ◽  
pp. 9468
Author(s):  
Yunyun Sun ◽  
Yutong Liu ◽  
Haocheng Zhou ◽  
Huijuan Hu

Deep learning proves its promising results in various domains. The automatic identification of plant diseases with deep convolutional neural networks attracts a lot of attention at present. This article extends stochastic gradient descent momentum optimizer and presents a discount momentum (DM) deep learning optimizer for plant diseases identification. To examine the recognition and generalization capability of the DM optimizer, we discuss the hyper-parameter tuning and convolutional neural networks models across the plantvillage dataset. We further conduct comparison experiments on popular non-adaptive learning rate methods. The proposed approach achieves an average validation accuracy of no less than 97% for plant diseases prediction on several state-of-the-art deep learning models and holds a low sensitivity to hyper-parameter settings. Experimental results demonstrate that the DM method can bring a higher identification performance, while still maintaining a competitive performance over other non-adaptive learning rate methods in terms of both training speed and generalization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alvaro Fuentes ◽  
Sook Yoon ◽  
Mun Haeng Lee ◽  
Dong Sun Park

Recognizing plant diseases is a major challenge in agriculture, and recent works based on deep learning have shown high efficiency in addressing problems directly related to this area. Nonetheless, weak performance has been observed when a model trained on a particular dataset is evaluated in new greenhouse environments. Therefore, in this work, we take a step towards these issues and present a strategy to improve model accuracy by applying techniques that can help refine the model’s generalization capability to deal with complex changes in new greenhouse environments. We propose a paradigm called “control to target classes.” The core of our approach is to train and validate a deep learning-based detector using target and control classes on images collected in various greenhouses. Then, we apply the generated features for testing the inference of the system on data from new greenhouse conditions where the goal is to detect target classes exclusively. Therefore, by having explicit control over inter- and intra-class variations, our model can distinguish data variations that make the system more robust when applied to new scenarios. Experiments demonstrate the effectiveness and efficiency of the proposed approach on our extended tomato plant diseases dataset with 14 classes, from which 5 are target classes and the rest are control classes. Our detector achieves a recognition rate of target classes of 93.37% mean average precision on the inference dataset. Finally, we believe that our study offers valuable guidelines for researchers working in plant disease recognition with complex input data.


2021 ◽  
pp. 1-11
Author(s):  
Tianshi Mu ◽  
Kequan Lin ◽  
Huabing Zhang ◽  
Jian Wang

Deep learning is gaining significant traction in a wide range of areas. Whereas, recent studies have demonstrated that deep learning exhibits the fatal weakness on adversarial examples. Due to the black-box nature and un-transparency problem of deep learning, it is difficult to explain the reason for the existence of adversarial examples and also hard to defend against them. This study focuses on improving the adversarial robustness of convolutional neural networks. We first explore how adversarial examples behave inside the network through visualization. We find that adversarial examples produce perturbations in hidden activations, which forms an amplification effect to fool the network. Motivated by this observation, we propose an approach, termed as sanitizing hidden activations, to help the network correctly recognize adversarial examples by eliminating or reducing the perturbations in hidden activations. To demonstrate the effectiveness of our approach, we conduct experiments on three widely used datasets: MNIST, CIFAR-10 and ImageNet, and also compare with state-of-the-art defense techniques. The experimental results show that our sanitizing approach is more generalized to defend against different kinds of attacks and can effectively improve the adversarial robustness of convolutional neural networks.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242013
Author(s):  
Hongyu Wang ◽  
Hong Gu ◽  
Pan Qin ◽  
Jia Wang

Background Pneumothorax can lead to a life-threatening emergency. The experienced radiologists can offer precise diagnosis according to the chest radiographs. The localization of the pneumothorax lesions will help to quickly diagnose, which will be benefit for the patients in the underdevelopment areas lack of the experienced radiologists. In recent years, with the development of large neural network architectures and medical imaging datasets, deep learning methods have become a methodology of choice for analyzing medical images. The objective of this study was to the construct convolutional neural networks to localize the pneumothorax lesions in chest radiographs. Methods and findings We developed a convolutional neural network, called CheXLocNet, for the segmentation of pneumothorax lesions. The SIIM-ACR Pneumothorax Segmentation dataset was used to train and validate CheXLocNets. The training dataset contained 2079 radiographs with the annotated lesion areas. We trained six CheXLocNets with various hyperparameters. Another 300 annotated radiographs were used to select parameters of these CheXLocNets as the validation set. We determined the optimal parameters by the AP50 (average precision at the intersection over union (IoU) equal to 0.50), a segmentation evaluation metric used by several well-known competitions. Then CheXLocNets were evaluated by a test set (1082 normal radiographs and 290 disease radiographs), based on the classification metrics: area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and positive predictive value (PPV); segmentation metrics: IoU and Dice score. For the classification, CheXLocNet with best sensitivity produced an AUC of 0.87, sensitivity of 0.78 (95% CI 0.73-0.83), and specificity of 0.78 (95% CI 0.76-0.81). CheXLocNet with best specificity produced an AUC of 0.79, sensitivity of 0.46 (95% CI 0.40-0.52), and specificity of 0.92 (95% CI 0.90-0.94). For the segmentation, CheXLocNet with best sensitivity produced an IoU of 0.69 and Dice score of 0.72. CheXLocNet with best specificity produced an IoU of 0.77 and Dice score of 0.79. We combined them to form an ensemble CheXLocNet. The ensemble CheXLocNet produced an IoU of 0.81 and Dice score of 0.82. Our CheXLocNet succeeded in automatically detecting pneumothorax lesions, without any human guidance. Conclusions In this study, we proposed a deep learning network, called, CheXLocNet, for the automatic segmentation of chest radiographs to detect pneumothorax. Our CheXLocNets generated accurate classification results and high-quality segmentation masks for the pneumothorax at the same time. This technology has the potential to improve healthcare delivery and increase access to chest radiograph expertise for the detection of diseases. Furthermore, the segmentation results can offer comprehensive geometric information of lesions, which can benefit monitoring the sequential development of lesions with high accuracy. Thus, CheXLocNets can be further extended to be a reliable clinical decision support tool. Although we used transfer learning in training CheXLocNet, the parameters of CheXLocNet was still large for the radiograph dataset. Further work is necessary to prune CheXLocNet suitable for the radiograph dataset.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wanheng Liu ◽  
Ling Yin ◽  
Cong Wang ◽  
Fulin Liu ◽  
Zhiyu Ni

In this paper, a novel medical knowledge graph in Chinese approach applied in smart healthcare based on IoT and WoT is presented, using deep neural networks combined with self-attention to generate medical knowledge graph to make it more convenient for performing disease diagnosis and providing treatment advisement. Although great success has been made in the medical knowledge graph in recent studies, the issue of comprehensive medical knowledge graph in Chinese appropriate for telemedicine or mobile devices have been ignored. In our study, it is a working theory which is based on semantic mobile computing and deep learning. When several experiments have been carried out, it is demonstrated that it has better performance in generating various types of medical knowledge graph in Chinese, which is similar to that of the state-of-the-art. Also, it works well in the accuracy and comprehensive, which is much higher and highly consisted with the predictions of the theoretical model. It proves to be inspiring and encouraging that our work involving studies of medical knowledge graph in Chinese, which can stimulate the smart healthcare development.


Author(s):  
Priyanka Sahu ◽  
Anuradha Chug ◽  
Amit Prakash Singh ◽  
Dinesh Singh ◽  
Ravinder Pal Singh

Deep learning (DL) has rapidly become an essential tool for image classification tasks. This technique is now being deployed to the tasks of classifying and detecting plant diseases. The encouraging results achieved with this methodology hide many problems that are rarely addressed in related experiments. This study examines the main factors influencing the efficiency of deep neural networks for plant disease detection. The challenges discussed in the study are based on the literature as well as experiments conducted using an image database, which contains approximately 1,296 leaf images of the beans crop. A pre-trained convolutional neural network, EfficientNet B0, is used for training and testing purposes. This study gives and emphasizes on factors and challenges that may potentially affect the use of DL techniques to detect and classify plant diseases. Some solutions are also suggested that may overcome these problems.


Sign in / Sign up

Export Citation Format

Share Document