scholarly journals Oroxylin A Suppresses the Cell Proliferation, Migration, and EMT via NF-κB Signaling Pathway in Human Breast Cancer Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
XiaoHu Sun ◽  
Xinzhong Chang ◽  
Yunhua Wang ◽  
Boyang Xu ◽  
Xuchen Cao

Oroxylin A is a natural extract and has been reported to have a remarkable anticancer function. However, the mechanism of its anticancer activity remains not quite clear. In this study, we examined the inhibiting effects of Oroxylin A on breast cancer cell proliferation, migration, and epithelial-mesenchymal transition (EMT) and its possible molecular mechanism. The cytoactive and inflammatory factors were analyzed via Cell Counting Kit-8 assay and ELISA assay, respectively. Flow cytometry and western blotting were used to assess the cell proliferation. In addition, a wound healing assay and transwell assay were used to detect cell invasion and migration. qRT-PCR and western blot were employed to determine the effect of Oroxylin A on the EMT formation. Moreover, expression level of protein related to NF-κB signaling pathway was determined by western blot. The results revealed that Oroxylin A attenuated the cytoactivity of MDA-MB-231 cells in a dose- and a time-dependent manner. Moreover, cell proliferation, invasion, and migration of breast cancer cells were inhibited by Oroxylin A compared to the control. The mRNA and protein expression levels of E-cadherin were remarkably increased while N-cadherin and Vimentin remarkably decreased. Besides, Oroxylin A suppressed the expression of inflammatory factors and NF-κB activation. Furthermore, we also found that supplement of TNF-α reversed the effects of Oroxylin A on the cell proliferation, invasion, migration, and EMT in breast cancer cells. Taken together, our results suggested that Oroxylin A inhibited the cell proliferation, invasion, migration, and EMT through inactivating NF-κB signaling pathway in human breast cancer cells. These findings strongly suggest that Oroxylin A could be a therapeutic potential candidate for the treatment of breast cancer.

2021 ◽  
Author(s):  
Di-Di Zhang ◽  
Xiao-Lin Sun ◽  
Zhao-Yuan Liang ◽  
Li-Na Zhang

Abstract Background: Family with sequence similarity 96 member A and B (FAM96A and FAM96B) are two highly conserved homologous proteins belonging to MIP18 family. Many studies have shown that FAM96A and FAM96B play many different functions mainly through interacting with other different proteins. Recently, several studies show that FAM96A and FAM96B are significantly down-regulated compared in human gastrointestinal stromal tumors, colon cancer, liver cancer and gastric cancer with corresponding normal tissues. However, the molecular regulatory mechanisms of FAM96A and FAM96B in breast cancer development and metastasis are still unclear. In this work, we aimed to explore the molecular mechanisms of FAM96A and FAM96B in breast cancer progression.Methods: We used specific siRNAs to down-regulate FAM96A and FAM96B expression, and used recombinant plasmids to up-regulate FAM96A and FAM96B expression in breast cancer cells. Cell proliferation was measured using MTT and colony formation assays. Cell cycle and apoptosis were detected by flow cytometry analysis. Wound healing and transwell assays were used to examine cell migration and invasion abilities. The relationships among FAM96A/B, EMT and Wnt/β-catenin signaling pathway were determined by analyzing the expression changes of classical markers and biological functional changes after XAV-939 inhibitor treatment. Results: We found that FAM96A and FAM96B expression in breast cancer was down-regulated. FAM96A/B overexpression suppressed breast cancer cell proliferation, invasion and migration, induced cell apoptosis and led to cell cycle arrested in G0/G1 phase. Conversely, FAM96A/B knockdown exhibited the opposite effects on breast cancer cells. Moreover, our data demonstrated that FAM96A/B overexpression suppressed EMT and Wnt/β-catenin signaling pathway, while FAM96A/B knockdown showed the promoting effects on EMT and Wnt/β-catenin signaling pathway in breast cancer cells. Furthermore, a Wnt pathway inhibitor, XAV-939 treatment reversed the promoting effects of FAM96A and FAM96B knockdown on breast cancer cell proliferation, invasion and migration.Conclusions: Our findings revealed that FAM96A and FAM96B may act as tumor suppressor genes and inhibit breast cancer progression via modulating the Wnt/β-catenin pathway, which can provide the potential markers for the diagnosis and treatment of breast cancer.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 628
Author(s):  
Jilei Zhang ◽  
Rong Lu ◽  
Yongguo Zhang ◽  
Żaneta Matuszek ◽  
Wen Zhang ◽  
...  

Background: Transfer RNA (tRNA) queuosine (Q)-modifications occur specifically in 4 cellular tRNAs at the wobble anticodon position. tRNA Q-modification in human cells depends on the gut microbiome because the microbiome product queuine is required for its installation by the enzyme Q tRNA ribosyltransferase catalytic subunit 1 (QTRT1) encoded in the human genome. Queuine is a micronutrient from diet and microbiome. Although tRNA Q-modification has been studied for a long time regarding its properties in decoding and tRNA fragment generation, how QTRT1 affects tumorigenesis and the microbiome is still poorly understood. Results: We generated single clones of QTRT1-knockout breast cancer MCF7 cells using Double Nickase Plasmid. We also established a QTRT1-knockdown breast MDA-MB-231 cell line. The impacts of QTRT1 deletion or reduction on cell proliferation and migration in vitro were evaluated using cell culture, while the regulations on tumor growth in vivo were evaluated using a xenograft BALB/c nude mouse model. We found that QTRT1 deficiency in human breast cancer cells could change the functions of regulation genes, which are critical in cell proliferation, tight junction formation, and migration in human breast cancer cells in vitro and a breast tumor mouse model in vivo. We identified that several core bacteria, such as Lachnospiraceae, Lactobacillus, and Alistipes, were markedly changed in mice post injection with breast cancer cells. The relative abundance of bacteria in tumors induced from wildtype cells was significantly higher than those of QTRT1 deficiency cells. Conclusions: Our results demonstrate that the QTRT1 gene and tRNA Q-modification altered cell proliferation, junctions, and microbiome in tumors and the intestine, thus playing a critical role in breast cancer development.


2017 ◽  
Vol 51 ◽  
pp. 124-130 ◽  
Author(s):  
Hao-yu Lin ◽  
Shu-ming Sun ◽  
Xiao-feng Lu ◽  
Ping-ying Chen ◽  
Chun-fa Chen ◽  
...  

2016 ◽  
Vol 36 (6) ◽  
Author(s):  
Deqiang Wang ◽  
Ping Wu ◽  
Hui Wang ◽  
Lei Zhu ◽  
Wei Zhao ◽  
...  

Stress-activated protein kinase (SAPK) interacting protein 1 (SIN1) is an essential TORC2 component and a key regulator of Akt pathway that plays an important role in various pathological conditions including cancer. Whereas its functional role in breast cancer has not been well characterized. In the present study, SIN1 is associated with the progression and survival of breast cancer patients, as well as human breast cancer cell proliferation and migration. SIN1 mRNA level was significantly up-regulated in human breast cancer samples compared with their corresponding paracancerous histological normal tissues. Furthermore, the expression levels of SIN1 were also increased in three human breast cancer cell lines compared with human breast epithelial cell MCF10A. Overexpression of SIN1 promoted cell proliferation, colony formation and migration of breast cancer cells. Knockdown of SIN1 in MDA-MB-468 cells inhibited cell proliferation, colony formation and migration. In addition, SIN1 overexpression increased phosphorylation of Akt and knockdown of SIN1 inhibited phosphorylation of Akt in MDA-MB-468 cells. In a tumour xenograft model, overexpression of SIN1 promoted tumour growth of MDA-MB-468 cells in vivo, whereas SIN1 knockdown inhibits the tumour growth. Taken together, our results reveal that SIN1 plays an important role in breast cancer and SIN1 is a potential biomarker and a promising target in the treatment of breast cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qiaohong Nong ◽  
Shaokang Yu ◽  
Hui Hu ◽  
Xue Hu

Objective. In order to investigate the effect of lncRNA FOXD2-AS1 on breast cancer cells proliferation, migration, and drug resistance as well as its molecular mechanism. Methods. Real-time PCR was used to detect the expression of breast cancer tissues and cells from patients admitted to our hospital and the expression of lncRNA FOXD2-AS1 in MCF-7/ADR in adriamycin- (ADR-) resistant breast cancer cells. After interfering with or overexpressing lncRNA FOXD2-AS1 in MCF-7/ADR cells, cell proliferation, apoptosis, invasion, and migration were detected using CCK-8, flow cytometry, Transwell assay, and scratch test, respectively. The protein levels of PI3K, p-PI3K, AKT, and p-AKT in the PI3K/AKT signaling pathway were detected by Western blot. Results. lncRNA FOXD2-AS1 was upregulated in breast cancer tissues and cells and increased cell drug resistance to ADR. Downregulation of lncRNA FOXD2-AS1 inhibited invasion and migration of MCF-7/ADR cells, promoted apoptosis, increased chemosensitivity of MCF-7/ADR cells, and inhibited the activity of PI3K/AKT signaling pathway in MCF-7/ADR cells. Conclusions. lncRNA FOXD2-AS1 can promote the proliferation, invasion, migration, and drug resistance of breast cancer cells, inhibit apoptosis, and accelerate the development of breast cancer by positively regulating the PI3K/AKT signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document