scholarly journals Mei Symmetry and New Conserved Quantities of Time-Scale Birkhoff’s Equations

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Xiang-Hua Zhai ◽  
Yi Zhang

The time-scale dynamic equations play an important role in modeling complex dynamical processes. In this paper, the Mei symmetry and new conserved quantities of time-scale Birkhoff’s equations are studied. The definition and criterion of the Mei symmetry of the Birkhoffian system on time scales are given. The conditions and forms of new conserved quantities which are found from the Mei symmetry of the system are derived. As a special case, the Mei symmetry of time-scale Hamilton canonical equations is discussed and new conserved quantities for the Hamiltonian system on time scales are derived. Two examples are given to illustrate the application of results.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jin-Yue Chen ◽  
Yi Zhang

The time-scale version of Noether symmetry and conservation laws for three Birkhoffian mechanics, namely, nonshifted Birkhoffian systems, nonshifted generalized Birkhoffian systems, and nonshitfed constrained Birkhoffian systems, are studied. Firstly, on the basis of the nonshifted Pfaff-Birkhoff principle on time scales, Birkhoff’s equations for nonshifted variables are deduced; then, Noether’s quasi-symmetry for the nonshifted Birkhoffian system is proved and time-scale conserved quantity is presented. Secondly, the nonshifted generalized Pfaff-Birkhoff principle on time scales is proposed, the generalized Birkhoff’s equations for nonshifted variables are derived, and Noether’s symmetry for the nonshifted generalized Birkhoffian system is established. Finally, for the nonshifted constrained Birkhoffian system, Noether’s symmetry and time-scale conserved quantity are proposed and proved. The validity of the result is proved by examples.


2015 ◽  
Vol 25 (14) ◽  
pp. 1540024 ◽  
Author(s):  
Marat Akhmet ◽  
Mehmet Onur Fen

By using the reduction technique to impulsive differential equations [Akhmet & Turan, 2006], we rigorously prove the presence of chaos in dynamic equations on time scales (DETS). The results of the present study are based on the Li–Yorke definition of chaos. This is the first time in the literature that chaos is obtained for DETS. An illustrative example is presented by means of a Duffing equation on a time scale.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Shihuang Hong ◽  
Jing Gao ◽  
Yingzi Peng

A class of new nonlinear impulsive set dynamic equations is considered based on a new generalized derivative of set-valued functions developed on time scales in this paper. Some novel criteria are established for the existence and stability of solutions of such model. The approaches generalize and incorporate as special cases many known results for set (or fuzzy) differential equations and difference equations when the time scale is the set of the real numbers or the integers, respectively. Finally, some examples show the applicability of our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Haidong Liu ◽  
Puchen Liu

By means of novel analytical techniques, we have established several new oscillation criteria for the generalized Emden-Fowler dynamic equation on a time scale𝕋, that is,(r(t)|ZΔ(t)|α-1ZΔ(t))Δ+f(t,x(δ(t)))=0, with respect to the case∫t0∞r-1/α(s)Δs=∞and the case∫t0∞r-1/α(s)Δs<∞, whereZ(t)=x(t)+p(t)x(τ(t)),  αis a constant,|f(t,u)|⩾q(t)|uβ|,βis a constant satisfyingα⩾β>0, andr,p, andqare real valued right-dense continuous nonnegative functions defined on𝕋. Noting the parameter valueαprobably unequal toβ, our equation factually includes the existing models as special cases; our results are more general and have wider adaptive range than others' work in the literature.


2016 ◽  
Vol 66 (3) ◽  
Author(s):  
Xin Wu ◽  
Taixiang Sun

AbstractIn this paper, we study the oscillation criteria of the following higher order nonlinear delay dynamic equationon an arbitrary time scalewith


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Erbil Çetin ◽  
F. Serap Topal

Let be a periodic time scale in shifts . We use a fixed point theorem due to Krasnosel'skiĭ to show that nonlinear delay in dynamic equations of the form , has a periodic solution in shifts . We extend and unify periodic differential, difference, -difference, and -difference equations and more by a new periodicity concept on time scales.


2018 ◽  
Vol 68 (6) ◽  
pp. 1397-1420 ◽  
Author(s):  
Chao Wang ◽  
Ravi P. Agarwal ◽  
Donal O’Regan

Abstract In this paper, by using the concept of changing-periodic time scales and composition theorem of time scales introduced in 2015, we establish a local phase space for functional dynamic equations with infinite delay (FDEID) on an arbitrary time scale with a bounded graininess function μ. Through Krasnoseľskiĭ’s fixed point theorem, some sufficient conditions for the existence of local-periodic solutions for FDEID are established for the first time. This research indicates that one can extract a local-periodic solution for dynamic equations on an arbitrary time scale with a bounded graininess function μ through some index function.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Taixiang Sun ◽  
Qiuli He ◽  
Hongjian Xi ◽  
Weiyong Yu

We investigate the oscillation of the following higher order dynamic equation:{an(t)[(an-1(t)(⋯(a1(t)xΔ(t))Δ⋯)Δ)Δ]α}Δ+p(t)xβ(t)=0, on some time scaleT, wheren≥2,ak(t)  (1≤k≤n)andp(t)are positive rd-continuous functions onTandα,βare the quotient of odd positive integers. We give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 552
Author(s):  
Octavian Postavaru ◽  
Antonela Toma

Symmetries and their associated conserved quantities are of great importance in the study of dynamic systems. In this paper, we describe nonconservative field theories on time scales—a model that brings together, in a single theory, discrete and continuous cases. After defining Hamilton’s principle for nonconservative field theories on time scales, we obtain the associated Lagrange equations. Next, based on the Hamilton’s action invariance for nonconservative field theories on time scales under the action of some infinitesimal transformations, we establish symmetric and quasi-symmetric Noether transformations, as well as generalized quasi-symmetric Noether transformations. Once the Noether symmetry selection criteria are defined, the conserved quantities for the nonconservative field theories on time scales are identified. We conclude with two examples to illustrate the applicability of the theory.


2020 ◽  
Vol 76 (1) ◽  
pp. 115-126
Author(s):  
Gokula Nanda Chhatria

AbstractThis article deals with the oscillation criteria for a very extensively studied second order impulsive delay dynamic equations on time scale by using the Riccati transformation technique. Some examples are given to show the effect of impulse and to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document