scholarly journals Symmetries for Nonconservative Field Theories on Time Scale

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 552
Author(s):  
Octavian Postavaru ◽  
Antonela Toma

Symmetries and their associated conserved quantities are of great importance in the study of dynamic systems. In this paper, we describe nonconservative field theories on time scales—a model that brings together, in a single theory, discrete and continuous cases. After defining Hamilton’s principle for nonconservative field theories on time scales, we obtain the associated Lagrange equations. Next, based on the Hamilton’s action invariance for nonconservative field theories on time scales under the action of some infinitesimal transformations, we establish symmetric and quasi-symmetric Noether transformations, as well as generalized quasi-symmetric Noether transformations. Once the Noether symmetry selection criteria are defined, the conserved quantities for the nonconservative field theories on time scales are identified. We conclude with two examples to illustrate the applicability of the theory.

2018 ◽  
Vol 3 (2) ◽  
pp. 513-526
Author(s):  
Sheng-nan Gong ◽  
Jing-li Fu

AbstractThis paper propose Noether symmetries and the conserved quantities of the relative motion systems on time scales. The Lagrange equations with delta derivatives on time scales are presented for the system. Based upon the invariance of Hamilton action on time scales, under the infinitesimal transformations with respect to the time and generalized coordinates, the Hamilton’s principle, the Noether theorems and conservation quantities are given for the systems on time scales. Lastly, an example is given to show the application the conclusion.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jin-Yue Chen ◽  
Yi Zhang

The time-scale version of Noether symmetry and conservation laws for three Birkhoffian mechanics, namely, nonshifted Birkhoffian systems, nonshifted generalized Birkhoffian systems, and nonshitfed constrained Birkhoffian systems, are studied. Firstly, on the basis of the nonshifted Pfaff-Birkhoff principle on time scales, Birkhoff’s equations for nonshifted variables are deduced; then, Noether’s quasi-symmetry for the nonshifted Birkhoffian system is proved and time-scale conserved quantity is presented. Secondly, the nonshifted generalized Pfaff-Birkhoff principle on time scales is proposed, the generalized Birkhoff’s equations for nonshifted variables are derived, and Noether’s symmetry for the nonshifted generalized Birkhoffian system is established. Finally, for the nonshifted constrained Birkhoffian system, Noether’s symmetry and time-scale conserved quantity are proposed and proved. The validity of the result is proved by examples.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Xiang-Hua Zhai ◽  
Yi Zhang

The time-scale dynamic equations play an important role in modeling complex dynamical processes. In this paper, the Mei symmetry and new conserved quantities of time-scale Birkhoff’s equations are studied. The definition and criterion of the Mei symmetry of the Birkhoffian system on time scales are given. The conditions and forms of new conserved quantities which are found from the Mei symmetry of the system are derived. As a special case, the Mei symmetry of time-scale Hamilton canonical equations is discussed and new conserved quantities for the Hamiltonian system on time scales are derived. Two examples are given to illustrate the application of results.


2012 ◽  
Vol 44 (3) ◽  
pp. 227-232
Author(s):  
Taher Hassan

The purpose of this paper is to prove oscillation criterion for dynamic system \begin{equation*} u^{\Delta }=pv,\qquad v^{\Delta }=-qu^{\sigma }, \end{equation*}% where $p>0$ and $q$ are rd-continuous functions on a time scale such that $% \sup \mathbb{T=\infty }$ without explicit sign assumptions on $q$ and also without restrictive conditions on the time scale $\mathbb{T}.$


1996 ◽  
Vol 120 (2) ◽  
pp. 369-384 ◽  
Author(s):  
Ian M. Anderson ◽  
Juha Pohjanpelto

The interplay between symmetries, conservation laws, and variational principles is a rich and varied one and extends well beyond the classical Noether's theorem. Recall that Noether's first theorem asserts that to every r dimensional Lie algebra of (generalized) symmetries of a variational problem there are r conserved quantities for the corresponding Euler-Lagrange equations. Noether's second theorem asserts that infinite dimensional symmetry algebras (depending upon arbitrary functions of all the independent variables) lead to differential identities for the Euler-Lagrange equations.


2018 ◽  
Vol 25 (3) ◽  
pp. 581-592 ◽  
Author(s):  
Xiang-Hua Zhai ◽  
Yi Zhang

The theory of time scales that can unify and extend continuous and discrete analysis has proved to be more accurate in modeling the dynamic process. The Lie symmetry approach, which is an effective way to deal with different kinds of dynamical equations in a variety of areas of applied science, is to be analyzed on time scales. We begin with the Lie group of point infinitesimal transformations on time scales and its corresponding extensions. And the invariance of dynamical equations on time scales under the infinitesimal transformations is discussed. More specifically, the Lie symmetries for dynamical equations of mechanical systems on time scales including Lagrangian systems on time scales, Hamiltonian systems on time scales, and Birkhoffian systems on time scales are investigated as applications. Thus, the corresponding conserved quantities for mechanical systems on time scales are derived by using the Lie symmetries. Examples are given to illustrate the application of the results.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Ilaria Sesia ◽  
Giovanna Signorile ◽  
Tung Thanh Thai ◽  
Pascale Defraigne ◽  
Patrizia Tavella

AbstractWe present two different approaches to broadcasting information to retrieve the GNSS-to-GNSS time offsets needed by users of multi-GNSS signals. Both approaches rely on the broadcast of a single time offset of each GNSS time versus one common time scale instead of broadcasting the time offsets between each of the constellation pairs. The first common time scale is the average of the GNSS time scales, and the second time scale is the prediction of UTC already broadcast by the different systems. We show that the average GNSS time scale allows the estimation of the GNSS-to-GNSS time offset at the user level with the very low uncertainty of a few nanoseconds when the receivers at both the provider and user levels are fully calibrated. The use of broadcast UTC prediction as a common time scale has a slightly larger uncertainty, which depends on the broadcast UTC prediction quality, which could be improved in the future. This study focuses on the evaluation of two different common time scales, not considering the impact of receiver calibration, at the user and provider levels, which can nevertheless have an important impact on GNSS-to-GNSS time offset estimation.


2021 ◽  
Vol 2 (3) ◽  
pp. 1-15
Author(s):  
Cheng Wan ◽  
Andrew W. Mchill ◽  
Elizabeth B. Klerman ◽  
Akane Sano

Circadian rhythms influence multiple essential biological activities, including sleep, performance, and mood. The dim light melatonin onset (DLMO) is the gold standard for measuring human circadian phase (i.e., timing). The collection of DLMO is expensive and time consuming since multiple saliva or blood samples are required overnight in special conditions, and the samples must then be assayed for melatonin. Recently, several computational approaches have been designed for estimating DLMO. These methods collect daily sampled data (e.g., sleep onset/offset times) or frequently sampled data (e.g., light exposure/skin temperature/physical activity collected every minute) to train learning models for estimating DLMO. One limitation of these studies is that they only leverage one time-scale data. We propose a two-step framework for estimating DLMO using data from both time scales. The first step summarizes data from before the current day, whereas the second step combines this summary with frequently sampled data of the current day. We evaluate three moving average models that input sleep timing data as the first step and use recurrent neural network models as the second step. The results using data from 207 undergraduates show that our two-step model with two time-scale features has statistically significantly lower root-mean-square errors than models that use either daily sampled data or frequently sampled data.


2020 ◽  
Vol 33 (12) ◽  
pp. 5155-5172
Author(s):  
Quentin Jamet ◽  
William K. Dewar ◽  
Nicolas Wienders ◽  
Bruno Deremble ◽  
Sally Close ◽  
...  

AbstractMechanisms driving the North Atlantic meridional overturning circulation (AMOC) variability at low frequency are of central interest for accurate climate predictions. Although the subpolar gyre region has been identified as a preferred place for generating climate time-scale signals, their southward propagation remains under consideration, complicating the interpretation of the observed time series provided by the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array–Western Boundary Time Series (RAPID–MOCHA–WBTS) program. In this study, we aim at disentangling the respective contribution of the local atmospheric forcing from signals of remote origin for the subtropical low-frequency AMOC variability. We analyze for this a set of four ensembles of a regional (20°S–55°N), eddy-resolving (1/12°) North Atlantic oceanic configuration, where surface forcing and open boundary conditions are alternatively permuted from fully varying (realistic) to yearly repeating signals. Their analysis reveals the predominance of local, atmospherically forced signal at interannual time scales (2–10 years), whereas signals imposed by the boundaries are responsible for the decadal (10–30 years) part of the spectrum. Due to this marked time-scale separation, we show that, although the intergyre region exhibits peculiarities, most of the subtropical AMOC variability can be understood as a linear superposition of these two signals. Finally, we find that the decadal-scale, boundary-forced AMOC variability has both northern and southern origins, although the former dominates over the latter, including at the site of the RAPID array (26.5°N).


Sign in / Sign up

Export Citation Format

Share Document