scholarly journals The Role of Notch3 Signaling in Kidney Disease

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Cheng Yuan ◽  
Lihua Ni ◽  
Changjiang Zhang ◽  
Xiaoyan Wu

Notch receptors are transmembrane proteins that are members of the epidermal growth factor-like family. These receptors are widely expressed on the cell surface and are highly conserved. Binding to ligands on adjacent cells results in cleavage of these receptors, and their intracellular domains translocate into the nucleus, where target gene transcription is initiated. In the mammalian kidney, Notch receptors are activated during nephrogenesis and become silenced in the normal kidney after birth. Reactivation of Notch signaling in the adult kidney could be due to the genetic activation of Notch signaling or kidney injury. Notch3 is a mammalian heterodimeric transmembrane receptor in the Notch gene family. Notch3 activation is significantly increased in various glomerular diseases, renal tubulointerstitial diseases, glomerular sclerosis, and renal fibrosis and mediates disease occurrence and development. Here, we discuss numerous recently published papers describing the role of Notch3 signaling in kidney disease.

2021 ◽  
Vol 11 (8) ◽  
pp. 820
Author(s):  
Mengyuan Ge ◽  
Sandra Merscher ◽  
Alessia Fornoni

Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of “fatty kidney disease” and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.


2019 ◽  
Vol 3 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Pooja Amarapurkar ◽  
Salim Bou-Slaiman ◽  
Bianca Madrid ◽  
Marco Ladino

Over the past decade, the relationships between various kidney disease and cancer have been established, but not fully elucidated. Development of acute kidney injury or chronic kidney disease as a side effect of cancer treatment is not uncommon. However, renal paraneoplastic diseases are rather unique and less known examples of the association between kidney disease and cancer. These conditions are of importance to the nephrologist as they may be the initial presentation of an underlying malignancy and may not respond to the usual therapies used for their non-paraneoplastic variants. This article will discuss the pathogenesis and challenges in management of paraneoplastic glomerular diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jianwen Yu ◽  
Danli Xie ◽  
Naya Huang ◽  
Qin Zhou

Circular RNAs (circRNAs) are a novel type of non-coding RNAs that have aroused growing attention in this decade. They are widely expressed in eukaryotes and generally have high stability owing to their special closed-loop structure. Many circRNAs are abundant, evolutionarily conserved, and exhibit cell-type-specific and tissue-specific expression patterns. Mounting evidence suggests that circRNAs have regulatory potency for gene expression by acting as microRNA sponges, interacting with proteins, regulating transcription, or directly undergoing translation. Dysregulated expression of circRNAs were found in many pathological conditions and contribute to the pathogenesis and progression of various disorders, including renal diseases. Recent studies have revealed that circRNAs may serve as novel reliable biomarkers for the diagnosis and prognosis prediction of multiple kidney diseases, such as renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), and other glomerular diseases. Furthermore, circRNAs expressed by intrinsic kidney cells are shown to play a substantial role in kidney injury, mostly reported in DKD and RCC. Herein, we review the biogenesis and biological functions of circRNAs, and summarize their roles as promising biomarkers and therapeutic targets in common kidney diseases.


2021 ◽  
pp. 353-382
Author(s):  
Gopesh K. Modi ◽  
Vivekanand Jha

Assessing renal function, Urinalysis, Proteinuria, Hematuria, Chyluria, Imaging in renal disease, Kidney biopsy, Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy, End Stage Renal Disease and Dialysis, Kidney Transplantation, Glomerular diseases, Acute glomerulonephritis, Urinary schistosomiasis (bilharzia), Infections and Kidney Disease, Rapidly Progressive glomerulonephritis, Tubulointerstitial Disease, Urinary Tract Infection, Vesico-ureteric reflux, Renal Stones, Renal Disease in Pregnancy, Renal Artery Stenosis, Renal Mass, Inherited Renal Diseases


2010 ◽  
Vol 298 (1) ◽  
pp. L45-L56 ◽  
Author(s):  
Keli Xu ◽  
Erica Nieuwenhuis ◽  
Brenda L. Cohen ◽  
Wei Wang ◽  
Angelo J. Canty ◽  
...  

Distal lung development occurs through coordinated induction of myofibroblasts, epithelial cells, and capillaries. Lunatic Fringe ( Lfng) is a β1–3 N-acetylglucosamine transferase that modifies Notch receptors to facilitate their activation by Delta-like (Dll1/4) ligands. Lfng is expressed in the distal lung during saccular development, and deletion of this gene impairs myofibroblast differentiation and alveogenesis in this context. A similar defect was observed in Notch2 β-geo/+ Notch3 β-geo/β-geo compound mutant mice but not in Notch2 β-geo/+ or Notch3 β-geo/β-geo single mutants. Finally, to directly test for the role of Notch signaling in myofibroblast differentiation in vivo, we used ROSA26-rtTA/+; tetO-CRE/+; RBPJκflox/flox inducible mutant mice to show that disruption of canonical Notch signaling during late embryonic development prevents induction of smooth muscle actin in mesenchymal cells of the distal lung. In sum, these results demonstrate that Lfng functions to enhance Notch signaling in myofibroblast precursor cells and thereby to coordinate differentiation and mobilization of myofibroblasts required for alveolar septation.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Deepali Junnarkar Roy ◽  
Shrikant Digambarrao Pande ◽  
Zhong Hong Liew ◽  
Debajyoti Roy

Introduction. It is not uncommon for patients without preceding history of kidney disease to present to the Emergency department with renal failure. The absence of prior medical records or renal imaging presents a diagnostic challenge. Elevated parathyroid hormone levels or echogenic contracted kidneys on ultrasound are known to point to a diagnosis of chronic kidney disease. The literature in this regard is surprisingly limited. The objective of this study is to assess the role of intact parathyroid (iPTH) blood level and bedside ultrasound in differentiating acute kidney injury from chronic kidney disease. Methods. A systematic review which included a literature search of 3 databases, PubMed, Embase, and Cinahl (R) as also secondary sources, was done. The inclusion criteria evaluated studies which evaluated iPTH or bedside ultrasound in differentiating acute kidney injury from chronic kidney disease. We excluded studies which used other laboratory biomarkers like neutrophil gelatin associated lipocalin (NGAL) or carbamylated haemoglobin. A total of 2256 articles were identified. After screening, the relevant articles were reviewed, and an assessment of their methodological quality was made based on the CASP: Critical Appraisals Skill Programme. Results. Of the 2256 articles identified, after screening, only 5 were identified as relevant. Conclusions. An elevated parathyroid hormone level and echogenic contracted kidneys on bedside ultrasound in the Emergency department can help differentiate acute kidney injury from chronic kidney disease. This differentiation helps decide need for admission as well as further management. Although iPTH level may also rise in acute kidney injury, the value (2.5 times normal) can discriminate it from chronic kidney disease.


2009 ◽  
Vol 187 (3) ◽  
pp. 343-353 ◽  
Author(s):  
Kazuhide Watanabe ◽  
Tadahiro Nagaoka ◽  
Joseph M. Lee ◽  
Caterina Bianco ◽  
Monica Gonzales ◽  
...  

Nodal and Notch signaling pathways play essential roles in vertebrate development. Through a yeast two-hybrid screening, we identified Notch3 as a candidate binding partner of the Nodal coreceptor Cripto-1. Coimmunoprecipitation analysis confirmed the binding of Cripto-1 with all four mammalian Notch receptors. Deletion analyses revealed that the binding of Cripto-1 and Notch1 is mediated by the Cripto-1/FRL-1/Cryptic domain of Cripto-1 and the C-terminal region of epidermal growth factor–like repeats of Notch1. Binding of Cripto-1 to Notch1 occurred mainly in the endoplasmic reticulum–Golgi network. Cripto-1 expression resulted in the recruitment of Notch1 protein into lipid raft microdomains and enhancement of the furin-like protein convertase-mediated proteolytic maturation of Notch1 (S1 cleavage). Enhanced S1 cleavage resulted in the sensitization to ligand-induced activation of Notch signaling. In addition, knockdown of Cripto-1 expression in human and mouse embryonal carcinoma cells desensitized the ligand-induced Notch signaling activation. These results suggest a novel role of Cripto-1 in facilitating the posttranslational maturation of Notch receptors.


Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1397-1404 ◽  
Author(s):  
Eliot C. Heher ◽  
Nelson B. Goes ◽  
Thomas R. Spitzer ◽  
Noopur S. Raje ◽  
Benjamin D. Humphreys ◽  
...  

Plasma cell dyscrasias are frequently encountered malignancies often associated with kidney disease through the production of monoclonal immunoglobulin (Ig). Paraproteins can cause a remarkably diverse set of pathologic patterns in the kidney and recent progress has been made in explaining the molecular mechanisms of paraprotein-mediated kidney injury. Other recent advances in the field include the introduction of an assay for free light chains and the use of novel antiplasma cell agents that can reverse renal failure in some cases. The role of stem cell transplantation, plasma exchange, and kidney transplantation in the management of patients with paraprotein-related kidney disease continues to evolve.


2022 ◽  
Vol 8 ◽  
Author(s):  
Chao Han ◽  
Juan Zheng ◽  
Fengyi Wang ◽  
Qingyang Lu ◽  
Qingfa Chen ◽  
...  

Organic cation transporter 2 (OCT2), encoded by the SLC22A2 gene, is the main cation transporter on the basolateral membrane of proximal tubular cells. OCT2 facilitates the entry step of the vectorial transport of most cations from the peritubular space into the urine. OCT2 downregulation in kidney disease models is apparent, yet not clear from a mechanistic vantage point. The aim of this study was to explore the role of inflammation, a common thread in kidney disease, and NF-kB in OCT2 modulation and tubular secretion. Among the OCTs, OCT2 was found consistently downregulated in the kidney of rats with chronic kidney disease (CKD) or acute kidney injury (AKI) and in patients diagnosed with CKD, and it was associated with the upregulation of TNFα renal expression. Exposure to TNFα reduced the expression and function of OCT2 in primary renal proximal tubule epithelial cells (RPTEC). Silencing or pharmacological inhibition of NF-kB rescued the expression of OCT2 in the presence of TNFα, indicating that OCT2 repression was NF-kB-dependent. In silico prediction coupled to gene reporter assay demonstrated the presence of at least one functional NF-kB cis-element upstream the transcription starting site of the SLC22A2 gene. Acute inflammation triggered by lipopolysaccharide injection induced TNFα expression and the downregulation of OCT2 in rat kidney. The inflammation did reduce the active secretion of the cation Rhodamine 123, with no impairment of the glomerular filtration. In conclusion, the NF-kB pathway plays a major role in the transcriptional regulation of OCT2 and, in turn, in the overall renal secretory capacity.


Sign in / Sign up

Export Citation Format

Share Document