scholarly journals Effect of Nanoclays on Moisture Susceptibility of SBS-Modified Asphalt Binder

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Han Wang ◽  
Yinchuan Guo ◽  
Aiqin Shen ◽  
Xiaolong Yang ◽  
Peng Li

Moisture susceptibility plays an important role in the damage of asphalt pavement. Failure occurs when asphalt is removed from the aggregate particles due to the decreased adhesion between the asphalt and aggregate in comparison with that between water and the aggregate. In recent years, efforts utilizing nanomaterials to improve the diverse properties of asphalt have proven to be effective. In this study, three types of nanoclays were used to modify styrene-butadiene-styrene- (SBS-) modified asphalt. The resistances to water damage of the modified binders were evaluated using the surface free energy (SFE) and atomic force microscopy (AFM). The results revealed that the total SFE decreased and the energy ratio (ER) increased when the asphalt binder was modified with the nanoclays, indicating that the addition of nanoclays can improve the moisture resistance of these aggregate-binder systems. After immersion, a decreased amount of bee structures was observed in both the SBS and nanoclay-modified asphalts due to the interactions between water and bitumen. However, the residual amount of bee structures was higher in the nanoclay-modified asphalts than in the SBS-modified asphalt, indicating that the addition of nanoclay makes the surface morphology of asphalt more resistant to water damage. Finally, freeze-thaw splitting tests were used to verify the results obtained through the SFE and AFM tests.

2010 ◽  
Vol 168-170 ◽  
pp. 906-911
Author(s):  
Chuan Feng Zheng ◽  
Lei Wang ◽  
Da Jun Zhao

pavement performance of SEBS modified asphalt mixture are analyzed. Dynamic shear rhometer(DSR) experiments were performed to evaluate the rheology properties of SEBS modified asphalt binder and performance of SEBS modified asphalt mixture was evaluated based on laboratory experiments, experiments included: wheel tracking, moisture susceptibility, low-temperature beam bending and fatigue. The results shows that the rheology properties of SEBS modified asphalt binder are more ideal than SBS modified asphalt binder on anti-fatigue effect. Tensile stress ratio(TSR) of SEBS modified asphalt mixture increases 5.0%, tensile strength increases 6.1% and tensile strain increases 19.8%, though the dynamic stability(DS) decreases 3.1%, the fatigue life-span increases significantly compared with SBS modified asphalt mixture. It means that pavement performance of SEBS modified asphalt mixture is better than SBS modified asphalt mixture, and it is more applicable to be utilized in highway engineerings and some special engineerings such as bridge deck pavement that need anti-fatigue performance.


2020 ◽  
Vol 982 ◽  
pp. 195-200
Author(s):  
Abdullah Al Mamun ◽  
Okan Sirin

Nanotechnology has contributed significantly to different subfields of the construction industry, including asphalt pavement engineering. The improved properties and new functionalities of the nanomaterials have provided different desired properties of asphalt. In this study, the effectiveness of multi-walled carbon nanotubes (MWCNT) in resisting the oxidation of polymer-modified asphalt was measured. A total of three different percentages (0.5%, 1%, and 1.5%) of MWCNT were used to modify the Styrene-Butadiene (SB) and styrene–butadiene–styrene (SBS) modified asphalt (4% and 5%). The laboratory oxidized asphalt samples were evaluated by an atomic force microscopy machine. The oxidation of the polymer-MWCNT modified asphalt is measured by simulating the existing functional group of the asphalt and as a function of the adhesive force. It is observed that the use of MWCNT in SB and SBS can increase the resistance to oxidation.


2021 ◽  
Vol 1036 ◽  
pp. 459-470
Author(s):  
Hong Gang Zhang ◽  
Qiang Huai Zhang ◽  
Xue Ting Wang ◽  
Hua Tan ◽  
Li Ning Gao ◽  
...  

A styrene-butadiene-styrene triblock copolymer (SBS) was grafted with an unsaturated polar monomer (monomer A) composed of maleic anhydride (MAH) and methoxy polyethylene (MPEG) via a ring-opening reaction after epoxidizing styrene-butadiene-styrene triblock copolymer (ESBS). The microscopic changes of SBS before and after grafting has been characterized with Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS) and gel permeation chromatography (GPC). The results revealed that the monomer A was successfully grafted on SBS backbone, and the maximum graft ratio (GR) was 20.32%. To verify the compatibility between SBS and asphalt, solubility parameters and surface free energy (SFE) of SBS, grafted SBS and asphalt were measured. It was found that the solubility parameter and SFE of grafted SBS were closer to asphalt compared with SBS. It also has been confirmed from storage stability that the temperature susceptibility of grafted SBS modified asphalt was reduced in compare with SBS modified asphalt binder. As consequence, the use of grafted copolymer can be considered a suitable alternative for modification of asphalt binder in pavement.


2021 ◽  
Vol 11 (19) ◽  
pp. 9242
Author(s):  
Xiaobing Chen ◽  
Yunfeng Ning ◽  
Yongming Gu ◽  
Ronglong Zhao ◽  
Jinhu Tong ◽  
...  

To investigate the influence of multiple cycles of aging and rejuvenation on the rheological, chemical, and morphological properties of styrene–butadiene–styrene (SBS)-modified asphalt-binders, the asphalt-binders were aged using two laboratory simulation methods, namely a rolling thin film oven (RTFO) test for short-term aging and pressure aging vessel (PAV) for long-term aging. The asphalt-binders were then rejuvenated with three types of rejuvenators (Type I, II, and III) with different dosages (i.e., 6%, 10%, and 14% for the first, second, and third rejuvenation, respectively). A dynamic shear rheometer (DSR) was then used to analyze the effect of rejuvenators on the rheological properties of all the asphalt-binders. The changes in the functional groups and microscopic morphology in the process of multiple aging and rejuvenation cycles were studied using Fourier transform infrared (FTIR) and atomic force microscopy (AFM). The results indicated that the three rejuvenators could soften the stiffness and restore the microstructures of the aged asphalt-binders in the process of repeated aging and rejuvenation from DSR and AFM testing. Considering the rutting and fatigue properties, the Type I rejuvenator exhibited the potential to achieve the desired rejuvenation effects under multiple rejuvenation cycles. During the multiple aging and rejuvenation cycles, the aging resistance of SBSMA decreased gradually from the FTIR results. This inherently limited the number of repeated rejuvenation cycles. This research is conducive to promoting the application of repeated penetrating rejuvenation.


2017 ◽  
Vol 2630 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Matheus S. Gaspar ◽  
Kamilla L. Vasconcelos ◽  
Amanda H. M. da Silva ◽  
Liedi L. B. Bernucci

Reflective cracking is a common issue with respect to rehabilitated asphalt pavements, especially when the rehabilitation is done by applying a hot-mix asphalt overlay on the existing damaged pavement. Several approaches can be adopted to delay reflective cracking. They include an increase of the overlay thickness and the use of a stress relief asphalt mixture (SRAM), which is a fine-graded, flexible, and thin asphalt interlayer. Because the efficiency of a SRAM is highly related to the properties of the asphalt binder used in the mixture, it is of interest to use a highly modified asphalt (HiMA) binder. This paper describes a field test comprising three sections at BR-116 (a heavily trafficked highway in Brazil). One of the rehabilitation strategies used for a cracked asphalt pavement was a 2.5-cm SRAM (produced with a HiMA binder) and 5-cm styrene–butadiene–styrene (SBS) hot-mix asphalt (HMA). The other two strategies were to apply SBS HMA overlays of different thicknesses (7.5 cm and 10.5 cm). The aim was to evaluate and compare the capability of these solutions to control reflective cracking. Rheological properties and multiple stress creep and recovery tests were performed on the asphalt binders, and the semicircular bending test was performed on the asphalt mixtures. The surface conditions were monitored, and the results for each section were compared. After a 29-month period, the section that received the interlayer had the lowest cracked area and showed better resistance than the overlays did to reflective cracking and better maintenance of the original thickness of the pavement.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5672
Author(s):  
Xuewen Zheng ◽  
Wenyuan Xu ◽  
Shuangrui Xie

In order to explore the influence mechanism of carbon nanotubes on the ultraviolet (UV) aging properties of the SBS-modified asphalt binder, the changes of functional groups in the one-dimensional infrared spectrum and two-dimensional infrared correlation spectrum are studied in this paper. The results show that the UV aging process of the SBS-modified asphalt binder is the process of alkane chain cleavage and reorganization, the formation of oxygen-containing functional groups and decomposition of SBS. The incorporation of carbon nanotubes can reduce the mutual conversion of methyl and methylene functional groups, inhibit the decomposition of butadiene and the destruction of C = C double bonds in SBS. The degradation of SBS during the process of UV aging leads to the change of many functional groups and acceleration of the aging of the SBS-modified asphalt binder. The addition of carbon nanotubes can effectively alleviate the degradation of SBS and the formation of oxygen-containing functional groups at the early stage of UV aging, and reduce the influence of these two changes on other functional groups; thus, improving the anti-aging performance of the SBS-modified asphalt binder.


Sign in / Sign up

Export Citation Format

Share Document