scholarly journals The Emerging Role of PPAR Beta/Delta in Tumor Angiogenesis

PPAR Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Siyue Du ◽  
Nicole Wagner ◽  
Kay-Dietrich Wagner

PPARs are ligand-activated transcriptional factors that belong to the nuclear receptor superfamily. Among them, PPAR alpha and PPAR gamma are prone to exert an antiangiogenic effect, whereas PPAR beta/delta has an opposite effect in physiological and pathological conditions. Angiogenesis has been known as a hallmark of cancer, and our recent works also demonstrate that vascular-specific PPAR beta/delta overexpression promotes tumor angiogenesis and progression in vivo. In this review, we will mainly focus on the role of PPAR beta/delta in tumor angiogenesis linked to the tumor microenvironment to further facilitate tumor progression and metastasis. Moreover, the crosstalk between PPAR beta/delta and its downstream key signal molecules involved in tumor angiogenesis will also be discussed, and the network of interplay between them will further be established in the review.

PPAR Research ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Andréa Tavares Dantas ◽  
Michelly Cristiny Pereira ◽  
Moacyr Jesus Barreto de Melo Rego ◽  
Laurindo Ferreira da Rocha ◽  
Ivan da Rocha Pitta ◽  
...  

Fibrosis is recognized as an important feature of many chronic diseases, such as systemic sclerosis (SSc), an autoimmune disease of unknown etiology, characterized by immune dysregulation and vascular injury, followed by progressive fibrosis affecting the skin and multiple internal organs. SSc has a poor prognosis because no therapy has been shown to reverse or arrest the progression of fibrosis, representing a major unmet medical need. Recently, antifibrotic effects of PPARγligands have been studiedin vitroandin vivoand some theories have emerged leading to new insights. Aberrant PPARγfunction seems to be implicated in pathological fibrosis in the skin and lungs. This antifibrotic effect is mainly related to the inhibition of TGF-β/Smad signal transduction but other pathways can be involved. This review focused on recent studies that identified PPARγas an important novel pathway with critical roles in regulating connective tissue homeostasis, with emphasis on skin and lung fibrosis and its role on systemic sclerosis.


Author(s):  
B. A. Shenderov ◽  
A. B. Sinitsa ◽  
M. M. Zakharchenko ◽  
E. I. Tkachenko

An increasing number of gram-negative and gram-positive bacteria have been observed to secrete outer- membrane vesicles (OMVs) during their growth both under physiological and pathological conditions in vitro and in vivo. These cell-derived particles are present in many — if not all — physiological fluids. They can convey the multiple various low weight effector and signal molecules (proteins, nucleic acids, lipids, and carbohydrates) into the bacterial and host cells that have important functions in their intercellular communication and regulation. Involvement of OMVS in the various biological functions of prokariotic and eukaryotic cells make them to be key players in both physiological processes and also in pathological conditions. Additionally, the ability of OMVs to deliver molecules to recipient cell opens the possibility of their use as novel disease biomarkers and as promising drug/therapy agents. In this Review, we describe the mechanisms through which bacterial OMVs can support the host homeostasis and health and induce host pathology or immune tolerance, and discuss the possibility of these OMVs participate in innovative nanobiotechnologies.


2020 ◽  
Vol 21 (11) ◽  
pp. 4179 ◽  
Author(s):  
Anne Frisch ◽  
Stefanie Kälin ◽  
Raymond Monk ◽  
Josefine Radke ◽  
Frank L. Heppner ◽  
...  

Glioblastoma (GBM) present with an abundant and aberrant tumor neo-vasculature. While rapid growth of solid tumors depends on the initiation of tumor angiogenesis, GBM also progress by infiltrative growth and vascular co-option. The angiogenic factor apelin (APLN) and its receptor (APLNR) are upregulated in GBM patient samples as compared to normal brain tissue. Here, we studied the role of apelin/APLNR signaling in GBM angiogenesis and growth. By functional analysis of apelin in orthotopic GBM mouse models, we found that apelin/APLNR signaling is required for in vivo tumor angiogenesis. Knockdown of tumor cell-derived APLN massively reduced the tumor vasculature. Additional loss of the apelin signal in endothelial tip cells using the APLN-knockout (KO) mouse led to a further reduction of GBM angiogenesis. Direct infusion of the bioactive peptide apelin-13 rescued the vascular loss-of-function phenotype specifically. In addition, APLN depletion massively reduced angiogenesis-dependent tumor growth. Consequently, survival of GBM-bearing mice was significantly increased when APLN expression was missing in the brain tumor microenvironment. Thus, we suggest that targeting vascular apelin may serve as an alternative strategy for anti-angiogenesis in GBM.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1133 ◽  
Author(s):  
Nicole Wagner ◽  
Kay-Dietrich Wagner

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. Three different isoforms, PPAR alpha, PPAR beta/delta and PPAR gamma have been identified. They all form heterodimers with retinoic X receptors to activate or repress downstream target genes dependent on the presence/absence of ligands and coactivators or corepressors. PPARs differ in their tissue expression profile, ligands and specific agonists and antagonists. PPARs attract attention as potential therapeutic targets for a variety of diseases. PPAR alpha and gamma agonists are in clinical use for the treatment of dyslipidemias and diabetes. For both receptors, several clinical trials as potential therapeutic targets for cancer are ongoing. In contrast, PPAR beta/delta has been suggested as a therapeutic target for metabolic syndrome. However, potential risks in the settings of cancer are less clear. A variety of studies have investigated PPAR beta/delta expression or activation/inhibition in different cancer cell models in vitro, but the relevance for cancer growth in vivo is less well documented and controversial. In this review, we summarize critically the knowledge of PPAR beta/delta functions for the different hallmarks of cancer biological capabilities, which interplay to determine cancer growth.


2009 ◽  
Vol 69 (3) ◽  
pp. 967-975 ◽  
Author(s):  
Ivy Chung ◽  
Guangzhou Han ◽  
Mukund Seshadri ◽  
Bryan M. Gillard ◽  
Wei-dong Yu ◽  
...  

2019 ◽  
Author(s):  
Chang Zhi Dong ◽  
Heriberto Bruzzoni-Giovanell ◽  
Yanhua Yu ◽  
Karim Dorgham ◽  
Christophe Parizot ◽  
...  

ABSTRACTSerine/threonine phosphatases are responsible for counteracting the effect of the protein kinases implicated in the development of several pathologies. Here we identified by PEP-scan approach the sequence of a fragment of LRRK2, a Parkinson’s disease associated protein, interacting with the phosphatase PP1. The fragment, that is located in a LRRK2 domain of undefined function, was associated in N-terminal to an optimized cell penetrating peptide in order to study their in vitro and in vivo biological activity. From this original sequence, we developed and studied five interfering peptides (IPs) and identified two peptides able to disrupt the LRRK2/PP1 interaction by in vitro competition in anti-LRRK2 immunoprecipitates. Using FITC-labelled peptides, we confirmed the internalization of the peptides in cell lines as well as in and primary human normal and pathological cells. Finally, we have confirmed by ELISA test the association of Mut3DPT-LRRK2-Long and Mut3DPT-LRRK2-Short peptides to purified PP1 protein in a selective manner. The shortest peptides, MuteDPT-LRRK2-5 to 8 with either N or C-terminal deletions are not able neither disrupt the association LRRK2/PP1 nor to associate to purified PP1 protein. The peptides Mut3DPT-LRRK2-Long and Mut3DPT-LRRK2-Short may be new tools to study the role of LRRK2/PP1 interaction in normal and pathological conditions.


2016 ◽  
Vol 48 ◽  
pp. e123 ◽  
Author(s):  
G.D. De Palma ◽  
D. Esposito ◽  
F. Maione ◽  
G. Luglio ◽  
S. Siciliano ◽  
...  

2019 ◽  
Vol 20 (15) ◽  
pp. 3641 ◽  
Author(s):  
Anna Pittaluga

Synaptosomes are used to decipher the mechanisms involved in chemical transmission, since they permit highlighting the mechanisms of transmitter release and confirming whether the activation of presynaptic receptors/enzymes can modulate this event. In the last two decades, important progress in the field came from the observations that synaptosomes retain changes elicited by both “in vivo” and “in vitro” acute chemical stimulation. The novelty of these studies is the finding that these adaptations persist beyond the washout of the triggering drug, emerging subsequently as functional modifications of synaptosomal performances, including release efficiency. These findings support the conclusion that synaptosomes are plastic entities that respond dynamically to ambient stimulation, but also that they “learn and memorize” the functional adaptation triggered by acute exposure to chemical agents. This work aims at reviewing the results so far available concerning this form of synaptosomal learning, also highlighting the role of these acute chemical adaptations in pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document