scholarly journals Peptides from Animal Origin: A Systematic Review on Biological Sources and Effects on Skin Wounds

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Raul Santos Alves ◽  
Levy Bueno Alves ◽  
Luciana Schulthais Altoé ◽  
Mariáurea Matias Sarandy ◽  
Mariella Bontempo Freitas ◽  
...  

Background. Skin wounds are closely correlated with opportunistic infections and sepsis risk. Due to the need of more efficient healing drugs, animal peptides are emerging as new molecular platforms to accelerate skin wound closure and to prevent and control bacterial infection. Aim. The aim of this study was to evaluate the preclinical evidence on the impact of animal peptides on skin wound healing. In addition, we carried out a critical analysis of the studies’ methodological quality. Main Methods. This systematic review was performed according to the PRISMA guidelines, using a structured search on the PubMed-Medline, Scopus, and Web of Science platforms to retrieve studies published until August 25, 2020 at 3 : 00 pm. The studies included were limited to those that used animal models, investigated the effect of animal peptides with no association with other compounds on wound healing, and that were published in English. Bias analysis and methodological quality assessments were examined through the SYRCLE’s RoB tool. Results. Thirty studies were identified using the PRISMA workflow. In general, animal peptides were effective in accelerating skin wound healing, especially by increasing cellular proliferation, neoangiogenesis, colagenogenesis, and reepithelialization. Considering standardized methodological quality indicators, we identified a marked heterogeneity in research protocols and a high risk of bias associated with limited characterization of the experimental designs. Conclusion. Animal peptides show a remarkable healing potential with biotechnological relevance for regenerative medicine. However, rigorous experimental approaches are still required to clearly delimit the mechanisms underlying the healing effects and the risk-benefit ratio attributed to peptide-based treatments.

Author(s):  
Matheus Almeida Cruz ◽  
Tiago Akira Araujo ◽  
Ingrid Regina Avanzi ◽  
Julia Risso Parisi ◽  
Ana Laura Martins de Andrade ◽  
...  

2019 ◽  
Vol 17 (2) ◽  
pp. 285-299 ◽  
Author(s):  
Yan Sun ◽  
Rei Ogawa ◽  
Bi‐Huan Xiao ◽  
Yu‐Xin Feng ◽  
Yan Wu ◽  
...  

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 787 ◽  
Author(s):  
Sanna-Maria Karppinen ◽  
Ritva Heljasvaara ◽  
Donald Gullberg ◽  
Kaisa Tasanen ◽  
Taina Pihlajaniemi

The efficient healing of skin wounds is crucial for securing the vital barrier function of the skin, but pathological wound healing and scar formation are major medical problems causing both physiological and psychological challenges for patients. A number of tightly coordinated regenerative responses, including haemostasis, the migration of various cell types into the wound, inflammation, angiogenesis, and the formation of the extracellular matrix, are involved in the healing process. In this article, we summarise the central mechanisms and processes in excessive scarring and acute wound healing, which can lead to the formation of keloids or hypertrophic scars, the two types of fibrotic scars caused by burns or other traumas resulting in significant functional or aesthetic disadvantages. In addition, we discuss recent developments related to the functions of activated fibroblasts, the extracellular matrix and mechanical forces in the wound environment as well as the mechanisms of scarless wound healing. Understanding the different mechanisms of wound healing is pivotal for developing new therapies to prevent the fibrotic scarring of large skin wounds.


2020 ◽  
pp. 088532822098027
Author(s):  
Tiago Akira Tashiro Araujo ◽  
Matheus Cruz Almeida ◽  
Ingrid Avanzi ◽  
Julia Parisi ◽  
Abdias Fernando Simon Sales ◽  
...  

Membranes or skin dressing are common treatments for skin wound injuries, collagen being one the most effective materials for their manufacturing. Many different sources of collagen with diverse methods of extraction and processing have been used, with evidence of positive effects on the stimulation of skin wound healing. In spite of these factors, there is still limited understanding of the interaction between collagen membranes and biological tissues, especially due to the series of different types of collagen origin. In this context, this study aimed to conduct a systematic review of the available literature examining the effect of various collagen membranes for accelerating skin wound healing in experimental animal models and clinical trials. The present review was performed from March to May of 2020 searching in two databases (PubMed and Scopus). The following Medical Subject Headings (MeSH) descriptors were used: “collagen”, “dressing”, “membranes”, “skin” and “wound”. After the eligibility assessment, 16 studies were included and analyzed. The studies demonstrated that collagen was obtained predominantly from bovine and porcine sources, by acetic acid and/or enzyme dissolution. Additionally, most of the studies demonstrated that the membranes were processed mainly by freeze-drying or lyophilization methods. All the in vivo and clinical trial studies evidenced positive outcomes in the wound healing process, thus confirming that collagen membranes are one of the most efficient treatment for skin wounds, highlighting the enormous potential of this biomaterial to be used for skin tissue engineering purposes.


2017 ◽  
Vol 26 (8) ◽  
pp. 1331-1340 ◽  
Author(s):  
Xionglin Chen ◽  
Min Zhang ◽  
Shixuan Chen ◽  
Xueer Wang ◽  
Zhihui Tian ◽  
...  

Skin wound healing is a complicated process that involves a variety of cells and cytokines. Fibroblasts play an important role in this process and participate in transformation into myofibroblasts, the synthesis of extracellular matrix (ECM) and fibers, and the secretion of a variety of growth factors. This study assessed the effects of peptide Ser-Ile-Lys-Val-Ala-Val (SIKVAV)--modified chitosan hydrogels on skin wound healing. We investigated the capability of peptide SIKVAV to promote cell proliferation and migration, the synthesis of collagen, and the secretion of a variety of growth factors using fibroblasts in vitro. We also treated skin wounds established in mice using peptide SIKVAV-modified chitosan hydrogels. Hematoxylin and eosin staining showed that peptide-modified chitosan hydrogels enhanced the reepithelialization of wounds compared with negative and positive controls. Masson’s trichrome staining demonstrated that more collagen fibers were deposited in the wounds treated with peptide-modified chitosan hydrogels compared with the negative and positive controls. Immunohistochemistry revealed that the peptide-modified chitosan hydrogels promoted angiogenesis in the skin wound. Taken together, these results suggest that peptide SIKVAV-modified chitosan hydrogels may be useful in wound dressing and the treatment of skin wounds.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Luciana S. Altoé ◽  
Raul S. Alves ◽  
Lyvia L. Miranda ◽  
Mariáurea M. Sarandy ◽  
Daniel S. S. Bastos ◽  
...  

The main objective of this study was to investigate the action of doxycycline hyclate (Dx) in the skin wound healing process in Wistar rats. We investigated the effect of Dx on inflammatory cell recruitment and production of inflammatory mediators via in vitro and in vivo analysis. In addition, we analyzed neovascularization, extracellular matrix deposition, and antioxidant potential of Dx on cutaneous repair in Wistar rats. Male animals ( n = 15 ) were divided into three groups with five animals each (protocol: 72/2017), and three skin wounds (12 mm diameter) were created on the back of the animals. The groups were as follows: C, received distilled water (control); Dx1, doxycycline hyclate (10 mg/kg/day); and Dx2, doxycycline hyclate (30 mg/kg/day). The applications were carried out daily for up to 21 days, and tissues from different wounds were removed every 7 days. Our in vitro analysis demonstrated that Dx led to macrophage proliferation and increased N-acetyl-β-D-glucosaminidase (NAG) production, besides decreased cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and metalloproteinases (MMP), which indicates that macrophage activation and COX-2 inhibition are possibly regulated by independent mechanisms. In vivo, our findings presented increased cellularity, blood vessels, and the number of mast cells. However, downregulation was observed in the COX-2 and PGE2 expression, which was limited to epidermal cells. Our results also showed that the downregulation of this pathway benefits the oxidative balance by reducing protein carbonyls, malondialdehyde, nitric oxide, and hydrogen peroxide (H2O2). In addition, there was an increase in the antioxidant enzymes (catalase and superoxide dismutase) after Dx exposure, which demonstrates its antioxidant potential. Finally, Dx increased the number of types I collagen and elastic fibers and reduced the levels of MMP, thus accelerating the closure of skin wounds. Our findings indicated that both doses of Dx can modulate the skin repair process, but the best effects were observed after exposure to the highest dose.


2020 ◽  
Vol 18 (3) ◽  
pp. 229-235
Author(s):  
Lydmila K. Khnychenko ◽  
Elena N. Selina ◽  
Olga M. Rodionova ◽  
Levon B. Piotrovskiy ◽  
Petr D. Shabanov

Materials and methods. In experiments on 180 male rats weighing 180200 g, the wound-healing effect of derivatives of imidazole (IEM-1181) was evaluated as a 10% ointment on models of aseptic full-layer linear and planar skin wounds. Results. It was found that the compound IEM-1181 in the form of 10% ointment has a pronounced on skin wound healing effect, manifested in the qualitative features of the regenerative healing process. With local application of the ointment containing the tested compound, the strength of the tissue formed on the site of a full-layer linear skin wound was increased when its edges were stretched, and the healing time of full-layer planar wounds was reduced. The morphological picture of the tissue formed at the site of the wound defect corresponded to complete healing by primary tension with complete epithelization of the surface and squamous cell differentiation of the epithelial regenerate without signs of inflammation and scar formation. Conclusion. The results of the study on experimental models of full-layer linear and planar skin wounds indicate that the wound healing effect of the tested ointment is due to the anti-inflammatory activity of the IEM-1181 compound


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Bárbara Cristina Félix Nogueira ◽  
Artur Kanadani Campos ◽  
Raul Santos Alves ◽  
Mariáurea Matias Sarandy ◽  
Rômulo Dias Novaes ◽  
...  

Cytokines and growth factors are known to play an important role in the skin wound closure process; however, in knockout organisms, the levels of these molecules can undergo changes that result in the delay or acceleration of this process. Therefore, we systematically reviewed evidence from preclinical studies about the main immunoregulatory molecules involved in skin repair through the analysis of the main mechanisms involved in the depletion of immunoregulatory genes, and we carried out a critical analysis of the methodological quality of these studies. We searched biomedical databases, and only original studies were analyzed according to the PRISMA guidelines. The included studies were limited to those which used knockout animals and excision or incision wound models without intervention. A total of 27 studies were selected; data for animal models, gene depletion, wound characteristics, and immunoregulatory molecules were evaluated and compared whenever possible. Methodological quality assessments were examined using the ARRIVE and SYRCLE’s bias of risk tool. In our review, the extracellular molecules act more negatively in the wound healing process when silenced and the metabolic pathway most affected involved in these processes was TGF-β/Smad, and emphasis was given to the importance of the participation of macrophages in TGF-β signaling. Besides that, proinflammatory molecules were more evaluated than anti-inflammatory ones, and the main molecules evaluated were, respectively, TGF-β1, followed by VEGF, IL-6, TNF-α, and IL-1β. Overall, most gene depletions delayed wound healing, negatively influenced the concentrations of proinflammatory cytokines, and consequently promoted a decrease of inflammatory cell infiltration, angiogenesis, and collagen deposition, compromising the formation of granulation tissue. The studies presented heterogeneous data and exhibited methodological limitations; therefore, mechanistic and highly controlled studies are required to improve the quality of the evidence.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2611 ◽  
Author(s):  
Xionglin Chen ◽  
Xiaoming Cao ◽  
He Jiang ◽  
Xiangxin Che ◽  
Xiaoyuan Xu ◽  
...  

: Skin wound healing is a complex and dynamic process that involves angiogenesis and growth factor secretion. Newly formed vessels can provide nutrition and oxygen for skin wound healing. Growth factors in skin wounds are important for keratinocytes and fibroblasts proliferation, epithelialization, extracellular matrix remodeling, and angiogenesis, which accelerate skin wound healing. Therefore, treatment strategies that enhance angiogenesis and growth factors secretion in skin wounds can accelerate skin wound healing. This study investigated the effects of a SIKVAV (Ser-Ile-Lys-Val-Ala-Val) peptide-modified chitosan hydrogel on skin wound healing. Hematoxylin and eosin (H&E) staining demonstrated that the SIKVAV-modified chitosan hydrogel accelerated the re-epithelialization of wounds compared with that seen in the negative and positive controls. Masson’s trichrome staining showed that more collagen fibers were deposited in the skin wounds treated with the SIKVAV-modified chitosan hydrogel than in the negative and positive controls. Immunohistochemistry assays demonstrated that more myofibroblasts were deposited and more angiogenesis occurred in skin wounds treated with the SIKVAV-modified chitosan hydrogel than in the negative and positive controls. In addition, ELISA assays showed that the SIKVAV-modified chitosan hydrogels promoted the secretion of growth factors in skin wounds. Taken together, these results suggest that the SIKVAV-modified chitosan hydrogel has the potential to be developed as synthesized biomaterials for the treatment of skin wounds.


2019 ◽  
Vol 20 (10) ◽  
pp. 2579 ◽  
Author(s):  
Chang-Chih Chen ◽  
Chia-Jen Nien ◽  
Lih-Geeng Chen ◽  
Kuen-Yu Huang ◽  
Wei-Jen Chang ◽  
...  

Sapindus mukorossi seed oil is commonly used as a source for biodiesel fuel. Its phytochemical composition is similar to the extracted oil from Sapindus trifoliatus seeds, which exhibit beneficial effects for skin wound healing. Since S. mukorossi seed shows no cyanogenic property, it could be a potential candidate for the treatment of skin wounds. Thus, we evaluated the effectiveness of S. mukorossi seed oil in the treatment of skin wounds. We characterized and quantified the fatty acids and unsaponifiable fractions (including β-sitosterol and δ-tocopherol) contained in S. mukorossi seed-extracted oil by GC-MS and HPLC, respectively. Cell proliferation and migratory ability were evaluated by cell viability and scratch experiments using CCD-966SK cells treated with S. mukorossi oil. The anti-inflammatory effects of the oil were evaluated by measuring the nitric oxide (NO) production in lipopolysaccharide-treated RAW 264.7 cells. Antimicrobial activity tests were performed with Propionibacterium acnes, Staphylococcus aureus, and Candida albicans using a modified Japanese Industrial Standard procedure. Uniform artificial wounds were created on the dorsum of rats. The wounds were treated with a carboxymethyl cellulose (CMC)/hyaluronic acid (HA)/sodium alginate (SA) hydrogel for releasing the S. mukorossi seed oil. The wound sizes were measured photographically for 12 days and were compared to wounds covered with analogous membranes containing a saline solution. Our results showed that the S. mukorossi seed oil used in this study contains abundant monounsaturated fatty acids, β-sitosterol, and δ-tocopherol. In the in vitro tests, S. mukorossi seed oil prompted cell proliferation and migration capability. Additionally, the oil had significant anti-inflammatory and anti-microbial activities. In the in vivo animal experiments, S. mukorossi seed oil-treated wounds revealed acceleration of sequential skin wound healing events after two days of healing. The size of oil-treated wound decreased to half the size of the untreated control after eight days of healing. The results suggest that S. mukorossi seed oil could be a potential source for promoting skin wound healing.


Sign in / Sign up

Export Citation Format

Share Document