scholarly journals OEDDBOS: An Efficient Data Distributing Strategy with Energy Saving in Sensor-Cloud Systems

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qifei Zhao ◽  
Gaocai Wang ◽  
Ying Peng ◽  
Yuting Lu

Sensor-cloud is a developing technology and popular paradigm for various applications. It integrates wireless sensor into a cloud computing environment. On the one hand, the cloud offers extensive data storage and analytical and processing capabilities not available in sensor nodes. On the other hand, data distribution (such as time synchronization and configuration files) is always an important topic in such sensor-cloud systems, which leads to a rapid increase in energy consumption by sensors. In this paper, we aim to reduce the energy consumption of data dissemination in sensor-cloud systems and study the optimization of energy consumption with time-varying channel quality when multiple nodes use the same channel to transmit data. Suppose that there is a certain probability that the nodes send data for competing channel. And then, they decide to distribute data in terms of channel quality for saving energy after getting the channel successfully whether or not. Firstly, we construct the maximization problem of average energy efficiency for distributing data with delay demand. Then, this maximization problem transferred an optimal stopping problem which generates the optimal stopping rule. At last, the thresholds of the optimal transmission rate in each period are solved by using the optimal stopping theory, and the optimal energy efficiency for data distribution is achieved. Simulation results indicate that the strategy proposed in this paper can to some extent improve average energy efficiency and delivery ratio and enhance energy optimization effect and network performance compared with other strategies.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xin Zheng ◽  
Yu Nan ◽  
Fangsu Wang ◽  
Ruiqing Song ◽  
Gang Zheng ◽  
...  

Considering the widespread use of mobile devices and the increased performance requirements of mobile users, shifting the complex computing and storage requirements of mobile terminals to the cloud is an effective way to solve the limitation of mobile terminals, which has led to the rapid development of mobile cloud computing. How to reduce and balance the energy consumption of mobile terminals and clouds in data transmission, as well as improve energy efficiency and user experience, is one of the problems that green cloud computing needs to solve. This paper focuses on energy optimization in the data transmission process of mobile cloud computing. Considering that the data generation rate is variable, because of the instability of the wireless connection, combined with the transmission delay requirement, a strategy based on the optimal stopping theory to minimize the average transmission energy of the unit data is proposed. By constructing a data transmission queue model with multiple applications, an admission rule that is superior to the top candidates is proposed by using secretary problem of selecting candidates with the lowest average absolute ranking. Then, it is proved that the rule has the best candidate. Finally, experimental results show that the proposed optimization strategy has lower average energy per unit of data, higher energy efficiency, and better average scheduling period.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Ying Peng ◽  
Gaocai Wang ◽  
Nao Wang

In mobile networks, transmission energy consumption dominates the major part of network energy consumption. To reduce energy consumption for data transmission is an important topic for constructing green mobile networks. According to Shannon formula, when the transmission power is constant, the better the channel quality is, the greater the transmission rate is. Then, more data will be delivered in a given period. And energy consumption per bit data transmitted will be reduced. Because channel quality varies with time randomly, it is a good opportunity for decreasing energy consumption to deliver data in the best channel quality. However, data has delay demand. The sending terminal cannot wait for the best channel quality unlimitedly. Actually, sending terminal has to select an optimal time to deliver data before data exceeds delay. For this, this paper obtains the optimal transmission rate threshold at each detection slot time by using optimal stopping approach. Then, sending terminal determines whether current time is the optimal time through comparing current transmission rate with the corresponding rate threshold, thus realizing energy-efficient transmission strategy, so as to decrease average energy consumption per bit data transmitted.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Runfu Liang ◽  
Gaocai Wang ◽  
Jintian Hu

As computing-intensive mobile applications become increasingly diversified, mobile devices’ computing power is hard to keep up with demand. Mobile devices migrate tasks to the Mobile Edge Computing (MEC) platform and improve the performance of task processing through reasonable allocation and caching of resources on the platform. Small cellular networks (SCN) have excellent short-distance communication capabilities, and the combination of MEC and SCN is a promising research direction. This paper focuses on minimizing energy consumption for task migration in small cellular networks and proposes a task migration energy optimization strategy with resource caching by combining optimal stopping theory with migration decision-making. Firstly, the process of device finding the MEC platform with the required task processing resources is formulated as the optimal stopping problem. Secondly, we prove an optimal stopping rule’s existence, obtain the optimal processing energy consumption threshold, and compare it with the device energy consumption. Finally, the platform with the best energy consumption is selected to process the task. In the simulation experiment, the optimization strategy has lower average migration energy consumption and higher average data execution energy efficiency and average distance execution energy efficiency, which improves task migration performance by 10% ∼ 60%.


2013 ◽  
Vol 409-410 ◽  
pp. 557-560
Author(s):  
Wu Xing Zheng ◽  
De Sheng Ju ◽  
Shi Long Liu

Through the investigations on a total of 2,079 residential buildings in Shijiazhuang, the author got the distributions, ages, structures, heating and cooling patterns, indoor comfort conditions, state of energy efficiency and actual energy consumptions etc. In addition, non-energy-efficient buildings, energy-saving 30%, energy-saving 50% and energy-saving 65% accounted for 24.8%, 17.8%, 22.4% and 35.0% respectively. The author calculated the total energy consumption of 397 sample existing residential buildings which is equivalent to about 48,600 t Standard Coal, and average energy consumption per unit area was about 28.0 kg/m2. The results may contribute to the future work of energy efficiency renovation of existing residential buildings in Shijiazhuang, even the whole Hebei Province.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Samuel Ekung ◽  
Isaac Abiodun Odesola ◽  
Timothy Adewuyi

PurposeThe dearth of green standards (GS) in sub-Saharan Africa is alarming and the green cost premiums (GCP) in seeking certification in emerging markets are scanty. This paper studied the Building Energy-Efficiency Code of Nigeria (BEEC) and estimated the potential GCPs associated with the various energy-efficiency ratings.Design/methodology/approachThe study retrofitted 150 conventional residential bungalow and maisonette buildings using BEEC's energy-efficiency interventions and performed analytical estimating of the retrofitted designs. The mean cost premium associated with each energy-efficiency intervention is presented as well as their financial benefits and payback periods. The benefits are achievable financial-savings due to a reduction in energy consumption and savings in electricity payment estimated from the average energy demands of each building. An independent t-test was further conducted to determine the cost differential between energy-efficient design (ED) and conventional design over a five-year period.FindingsThe potential GCPs and their payback periods are actually less than feared. The study showed that less than 5% and 21% extra funding would be required to achieve 1 to 4-Star and 5-Star energy-efficiency ratings involving passive design interventions and photovoltaic systems. Passive and active design interventions produced a financial savings of $8.08/m2 in electricity payment and $2.84/m2 per annum in energy consumption reduction. The financial-savings ($10.92/m2) was objective to pay-off the GCPs in less than four years. The independent t-test analysis showed the cost of ED is more economical after four years into the project lifecycle.Originality/valueThe research provides cost benchmarks for navigating cost planning and budgetary decisions during ED implementation and births a departure point for advancing energy-efficient construction in developing markets from the rational economic decision perspective.


2010 ◽  
Vol 14 (suppl.) ◽  
pp. 97-113 ◽  
Author(s):  
Dragoslav Sumarac ◽  
Maja Todorovic ◽  
Maja Djurovic-Petrovic ◽  
Natasa Trisovic

In this paper, presented is the state of the art of Energy Efficiency (EE) of residential buildings in Serbia. Special attention is paid to energy efficiency in already existing buildings. The average energy consumption in residential buildings in Serbia is over 150 kWh/m2 per year, while in developed European countries it is about 50 kWh/m2 per year. In this paper examined is the contribution of ventilation losses, through the windows of low quality, regardless whether they are poorly made, or made from bad materials, or with no adequate glass. Besides ventilation losses, which are of major importance in our buildings, special attention is paid to transmission losses, which are consequence of the quality and energy efficiency of the facade. All of the above statements are proved by measurements obtained on a representative building of the Block 34 in New Belgrade, built in the eighties of the last century. In addition to measurements performed the calculation of energy consumption for heating during winter has been made. The results of two different methods of calculation of energy consumption for heating are compared with the values obtained by measuring.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hyunjin Joo ◽  
Yujin Lim

Electric vehicles (EVs) have recently attracted increasing research interest, on account of environmental issues and diminishing fuel reserves. EVs are environmentally friendly but have a short driving range. EVs must utilize energy efficiently, because they travel with limited energy. Conventional vehicle routing methods are not suitable for EVs, as they do not take energy consumption into account. This study introduces an energy efficient routing method using ant colony optimization (ER-ACO) to maximize the energy efficiency. We simulated ER-ACO and compared it with other ACO techniques, including the conventional routing method and other approaches for EVs. As a result, the proposed model improved the energy efficiency in terms of both the average distance per kW and average energy consumption.


Sign in / Sign up

Export Citation Format

Share Document