scholarly journals Performance Analysis of Cooperative NOMA Systems with Incremental Relaying

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Zhenling Wang ◽  
Zhangyou Peng ◽  
Yongsheng Pei ◽  
Haojia Wang

In this paper, we investigate the performance of the non-orthogonal multiple access (NOMA) system with incremental relaying, where the relay is employed with amplify-and-forward (AF) or decode-and-forward (DF) protocols. To characterize the outage behaviors of the incremental cooperative NOMA (ICN) system, new closed-form expressions of both exact and asymptotic outage probability for two users are derived. In addition, the performance of the conventional cooperative NOMA (CCN) system is analyzed as a benchmark for the the purpose of comparison. We confirm that the outage performance of the distant user is enhanced when ICN system is employed. Numerical results are presented to demonstrate that (1) the near user of the ICN system achieves better outage behavior than that of the CCN system in the low signal-to-noise ratio (SNR) region; (2) the outage performance of distant user for the DF-based ICN system is superior to that of the AF-based ICN system when the system works in cooperative NOMA transmission mode; and (3) in the low SNR, the throughput of the ICN system is higher than that of the CCN system.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiang Zhao ◽  
Jinyong Sun

The outage performance of a reconfigurable intelligent surface- (RIS-) aided full-duplex cooperative nonorthogonal multiple access (NOMA) system is studied in this paper. Based on the statistical characteristics of the signal-to-noise ratio of the reflection channel from the access point via RIS to the near user, and the cooperative channel from the near user to the far NOMA user, the outage probability of both the near and far users is derived. Through the comparison with the outage performance of conventional cooperative NOMA without employing RIS, the superiority of the proposed scheme is demonstrated. Finally, the correctness of the analytical results is validated with simulation.


2021 ◽  
Author(s):  
Anand Jee ◽  
KAMAL AGRAWAL ◽  
Shankar Prakriya

This paper investigates the performance of a framework for low-outage downlink non-orthogonal multiple access (NOMA) signalling using a coordinated direct and relay transmission (CDRT) scheme with direct links to both the near-user (NU) and the far-user (FU). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying are considered. In this framework, NU and FU combine the signals from BS and R to attain good outage performance and harness a diversity of two without any need for feedback. For the NU, this serves as an incentive to participate in NOMA signalling. For both NU and FU, expressions for outage probability and throughput are derived in closed form. High-SNR approximations to the outage probability are also presented. We demonstrate that the choice of power allocation coefficient and target rate is crucial to maximize the NU performance while ensuring a desired FU performance. We demonstrate performance gain of the proposed scheme over selective decode-and-forward (SDF) CDRT-NOMA in terms of three metrics: outage probability, sum throughput and energy efficiency. Further, we demonstrate that by choosing the target rate intelligently, the proposed CDRT NOMA scheme ensures higher energy efficiency (EE) in comparison to its orthogonal multiple access counterpart. Monte Carlo simulations validate the derived expressions.


2021 ◽  
Author(s):  
Anand Jee ◽  
KAMAL AGRAWAL ◽  
Shankar Prakriya

This paper investigates the performance of a framework for low-outage downlink non-orthogonal multiple access (NOMA) signalling using a coordinated direct and relay transmission (CDRT) scheme with direct links to both the near-user (NU) and the far-user (FU). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying are considered. In this framework, NU and FU combine the signals from BS and R to attain good outage performance and harness a diversity of two without any need for feedback. For the NU, this serves as an incentive to participate in NOMA signalling. For both NU and FU, expressions for outage probability and throughput are derived in closed form. High-SNR approximations to the outage probability are also presented. We demonstrate that the choice of power allocation coefficient and target rate is crucial to maximize the NU performance while ensuring a desired FU performance. We demonstrate performance gain of the proposed scheme over selective decode-and-forward (SDF) CDRT-NOMA in terms of three metrics: outage probability, sum throughput and energy efficiency. Further, we demonstrate that by choosing the target rate intelligently, the proposed CDRT NOMA scheme ensures higher energy efficiency (EE) in comparison to its orthogonal multiple access counterpart. Monte Carlo simulations validate the derived expressions.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 424 ◽  
Author(s):  
Xianli Gong ◽  
Xinwei Yue ◽  
Feng Liu

In this paper, we investigate a downlink cooperative non-orthogonal multiple access (NOMA) network with decode-and-forward relaying, where two scenarios of user relaying with direct link and user relaying without direct link are discussed in detail. More particularly, the performance of cooperative NOMA system under the assumption of imperfect channel state information (ipCSI) is studied over Nakagami-m fading channels. To evaluate the outage performance of the above discussed two scenarios, the closed-form expressions of outage probability for a pair of users are derived carefully. The diversity orders of users are achieved in the high signal-to-noise region. An error floor appears in the outage probability owing to the existence of channel estimation errors under ipCSI conditions. Simulation results verify the validity of our analysis and show that: (1) NOMA is superior to conventional orthogonal multiple access; (2) The best user relaying location for cooperative NOMA networks should be near to the base station; and (3) The outage performance of distant user with direct link significantly outperforms distant user without direct link by comparing the two scenarios.


2021 ◽  
Vol 10 (2) ◽  
pp. 793-800
Author(s):  
Anh-Tu Le ◽  
Dinh-Thuan Do

In this paper, we investigate non-orthogonal multiple access (NOMA) network relying on wireless power transfer to prolong lifetime. The base station (BS) sends common signals to the relay with two functions (energy harvesting (EH) and signal processing) to further serve two NOMA users in downlink. Performance gap exists since different power allocation factor assigned from power splitting protocol adopted at the relay and such relay employs both amplify-and-forward (AF) and decode-and-forward schemes. To provide performance metrics, we prove formulas of the outage probability which is a function of transmit signal to noise ratio. Simulation results indicate specific parameters to adjust system performance of two user in the considered EH-NOMA system. This finding is important recommendation to design EH-NOMA which shows particular outage performance at required target rates.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 249 ◽  
Author(s):  
Xinji Tian ◽  
Qianqian Li ◽  
Xingwang Li ◽  
Hongxing Peng ◽  
Changsen Zhang ◽  
...  

Non-orthogonal multiple access (NOMA) system can meet the demands of ultra-high data rate, ultra-low latency, ultra-high reliability and massive connectivity of user devices (UE). However, the performance of the NOMA system may be deteriorated by the hardware impairments. In this paper, the joint effects of in-phase and quadrature-phase imbalance (IQI) and imperfect successive interference cancellation (ipSIC) on the performance of two-way relay cooperative NOMA (TWR C-NOMA) networks over the Rician fading channels are studied, where two users exchange information via a decode-and-forward (DF) relay. In order to evaluate the performance of the considered network, analytical expressions for the outage probability of the two users, as well as the overall system throughput are derived. To obtain more insights, the asymptotic outage performance in the high signal-to-noise ratio (SNR) region and the diversity order are analysed and discussed. Throughout the paper, Monte Carlo simulations are provided to verify the accuracy of our analysis. The results show that IQI and ipSIC have significant deleterious effects on the outage performance. It is also demonstrated that the outage behaviours of the conventional OMA approach are worse than those of NOMA. In addition, it is found that residual interference signals (IS) can result in error floors for the outage probability and zero diversity orders. Finally, the system throughput can be limited by IQI and ipSIC, and the system throughput converges to a fixed constant in the high SNR region.


2021 ◽  
Author(s):  
Daljeet Singh

Abstract This paper presents a generalized approach on performance of relay aided communication systems for 5G and beyond scenarios. A dual-hop decode and forwarding scheme is considered in the analysis. The relationship between the outage performance and cumulative distribution function (CDF) of signal to noise ratio (SNR) is exploited to derive a universal expression of outage probability valid for all fading scenarios irrespective of their nature or complexity. Further, an effort is made to parameterise the channel PDF in such a manner that reflects a commonly encountered practical fading scenario faced by current and future wireless communication systems. The analytical results obtained for various cases are validated by Monte-Carlo simulations.


2021 ◽  
Author(s):  
Anand Jee ◽  
KAMAL AGRAWAL ◽  
Shankar Prakriya

This paper investigates the performance of a framework for low-outage downlink non-orthogonal multiple access (NOMA) signalling using a coordinated direct and relay transmission (CDRT) scheme with direct links to both the near-user (NU) and the far-user (FU). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying are considered. In this framework, NU and FU combine the signals from BS and R to attain good outage performance and harness a diversity of two without any need for feedback. For the NU, this serves as an incentive to participate in NOMA signalling. For both NU and FU, expressions for outage probability and throughput are derived in closed form. High-SNR approximations to the outage probability are also presented. We demonstrate that the choice of power allocation coefficient and target rate is crucial to maximize the NU performance while ensuring a desired FU performance. We demonstrate performance gain of the proposed scheme over selective decode-and-forward (SDF) CDRT-NOMA in terms of three metrics: outage probability, sum throughput and energy efficiency. Further, we demonstrate that by choosing the target rate intelligently, the proposed CDRT NOMA scheme ensures higher energy efficiency (EE) in comparison to its orthogonal multiple access counterpart. Monte Carlo simulations validate the derived expressions.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4623
Author(s):  
Sinead Barton ◽  
Salaheddin Alakkari ◽  
Kevin O’Dwyer ◽  
Tomas Ward ◽  
Bryan Hennelly

Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the application of multi-variate statistical models. However, Raman scattering is a weak process, resulting in a trade-off between acquisition times and signal-to-noise ratios, which has limited its more widespread adoption as a clinical tool. Typically denoising is applied to the Raman spectrum from a biological sample to improve the signal-to-noise ratio before application of statistical modeling. A popular method for performing this is Savitsky–Golay filtering. Such an algorithm is difficult to tailor so that it can strike a balance between denoising and excessive smoothing of spectral peaks, the characteristics of which are critically important for classification purposes. In this paper, we demonstrate how Convolutional Neural Networks may be enhanced with a non-standard loss function in order to improve the overall signal-to-noise ratio of spectra while limiting corruption of the spectral peaks. Simulated Raman spectra and experimental data are used to train and evaluate the performance of the algorithm in terms of the signal to noise ratio and peak fidelity. The proposed method is demonstrated to effectively smooth noise while preserving spectral features in low intensity spectra which is advantageous when compared with Savitzky–Golay filtering. For low intensity spectra the proposed algorithm was shown to improve the signal to noise ratios by up to 100% in terms of both local and overall signal to noise ratios, indicating that this method would be most suitable for low light or high throughput applications.


Sign in / Sign up

Export Citation Format

Share Document