scholarly journals Performance Analysis of Reconfigurable Intelligent Surface-Aided Full-Duplex Cooperative NOMA System

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiang Zhao ◽  
Jinyong Sun

The outage performance of a reconfigurable intelligent surface- (RIS-) aided full-duplex cooperative nonorthogonal multiple access (NOMA) system is studied in this paper. Based on the statistical characteristics of the signal-to-noise ratio of the reflection channel from the access point via RIS to the near user, and the cooperative channel from the near user to the far NOMA user, the outage probability of both the near and far users is derived. Through the comparison with the outage performance of conventional cooperative NOMA without employing RIS, the superiority of the proposed scheme is demonstrated. Finally, the correctness of the analytical results is validated with simulation.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Zhenling Wang ◽  
Zhangyou Peng ◽  
Yongsheng Pei ◽  
Haojia Wang

In this paper, we investigate the performance of the non-orthogonal multiple access (NOMA) system with incremental relaying, where the relay is employed with amplify-and-forward (AF) or decode-and-forward (DF) protocols. To characterize the outage behaviors of the incremental cooperative NOMA (ICN) system, new closed-form expressions of both exact and asymptotic outage probability for two users are derived. In addition, the performance of the conventional cooperative NOMA (CCN) system is analyzed as a benchmark for the the purpose of comparison. We confirm that the outage performance of the distant user is enhanced when ICN system is employed. Numerical results are presented to demonstrate that (1) the near user of the ICN system achieves better outage behavior than that of the CCN system in the low signal-to-noise ratio (SNR) region; (2) the outage performance of distant user for the DF-based ICN system is superior to that of the AF-based ICN system when the system works in cooperative NOMA transmission mode; and (3) in the low SNR, the throughput of the ICN system is higher than that of the CCN system.


2008 ◽  
Vol 5 (1) ◽  
pp. 95-100
Author(s):  
Baghdad Science Journal

In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).


2021 ◽  
Author(s):  
Suyue Li ◽  
Junhuai Liu ◽  
Anhong Wang

Abstract Non-orthogonal multiple access (NOMA) collaborative communication is extremely beneficial to the users with poor channel conditions. It is essential to examine the performance of different NOMA users with superior cooperative forwarding protocols. This paper addresses the user cooperative NOMA system where one strong user (U2) assists one weak user (U1) to forward messages, and investigates the outage performance of both users with hybrid decode-and-amplify forwarding (HDAF) protocol. First, we derive the outage probability of U2 and U1 with HDAF. Secondly, we provide the closed-form expression for outage probability of U1 with the incremental hybrid decode-and-amplify forward (IHDAF) protocol at U2, which can further enhance the outage performance of U1 compared with HDAF. Moreover, we also present the system throughput expression and provide deep analysis on the effect of different forwarding protocols. Numerical results and Monte Carlo simulations jointly confirm the correctness of all the analytic derivations. In addition to saving the energy consumption of U2, IHDAF can make U1 achieve superior outage performance to HDAF. However, the system throughput almost overlap for both schemes given a threshold rate pair.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1713
Author(s):  
Hyunwoo Jung ◽  
Sung-Man Kim

We experimentally demonstrated full-duplex light-emitting diode (LED)-to-LED visible light communication (VLC) using LEDs as the transmitter and receiver. Firstly, we investigated the performance dependency on the wavelengths of the LED transmitter and receiver by measuring the rise time and signal-to-noise ratio (SNR). Through the investigation, we were able to choose the optimal LED color set for LED-to-LED VLC using Shannon’s channel capacity law. The bit error rate (BER) results of full-duplex and half-duplex LED-to-LED VLC systems with the optimal LED sets are shown to compare the performance. Furthermore, we discuss major distortions and signal losses in the full-duplex LED-to-LED VLC system.


Sign in / Sign up

Export Citation Format

Share Document