scholarly journals Inverse Jacobian Adaptive Tracking Control of Robot Manipulators with Kinematic, Dynamic, and Actuator Uncertainties

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bing Zhou ◽  
Liang Yang ◽  
Chengdong Wang ◽  
Yong Chen ◽  
Kairui Chen

In this paper, we mainly solve the adaptive control problem of robot manipulators with uncertain kinematics, dynamics, and actuators parameters, which has been a long-standing, yet unsolved problem in the robotics field, because of the technical difficulties in handling highly coupled effect between control torque and the mentioned uncertainties. To overcome the difficulties, we propose a new Lyapunov-based adaptive control methodology, which effectively fuses the inverse Jacobian technique and the actuator adaptation law, with which the chattering in tracking errors caused by actuator parameter perturbation is well suppressed. It is demonstrated that the asymptotic convergence of all closed-loop signals is guaranteed. Moreover, the effectiveness of our control scheme is illustrated through simulation studies.

2020 ◽  
Vol 53 (7-8) ◽  
pp. 1472-1481
Author(s):  
Han Wu ◽  
Lin Lang ◽  
Honglei An ◽  
Qing Wei ◽  
Hongxu Ma

Load-carrying exoskeletons need to cope with load variations, outside disturbances, and other uncertainties. This paper proposes an adaptive trajectory tracking control scheme for the load-carrying exoskeleton. The method is mainly composed of a computed torque controller and a fuzzy cerebellar model articulation controller. The fuzzy cerebellar model articulation controller is used to approximate model inaccuracies and load variations, and the computed torque controller deals with tracking errors. Simulations of an exoskeleton in squatting movements with model parameter changes and load variations are carried out, respectively. The results show a precise tracking response and high uncertainties toleration of the proposed method.


2014 ◽  
Vol 29 (2) ◽  
pp. 180-200 ◽  
Author(s):  
Daniela J. López-Araujo ◽  
Arturo Zavala-Río ◽  
Víctor Santibáñez ◽  
Fernando Reyes

2020 ◽  
Vol 12 (6) ◽  
pp. 168781402092783 ◽  
Author(s):  
Yunmei Fang ◽  
Cuicui An ◽  
Wanru Juan ◽  
Juntao Fei

An adaptive H-infinity tracking control is proposed for a z-axis microgyroscope with system nonlinearities. All the signals can be guaranteed in a bounded range, and tracking error is uniformly ultimately bounded, an H-infinity tracking performance is also achieved to a prescribed level. Adaptive control methodology is integrated with H-infinity control technique to achieve robust adaptive control, and adaptive algorithm is used to estimate the unknown system parameters. Simulation studies for microgyroscope are conducted to prove the validity of the proposed control scheme with good performance and robustness.


Author(s):  
Vinodhini M.

The objective of this paper is to develop a Direct Model Reference Adaptive Control (DMRAC) algorithm for a MIMO process by extending the MIT rule adopted for a SISO system. The controller thus developed is implemented on Laboratory interacting coupled tank process through simulation. This can be regarded as the relevant process control in petrol and chemical industries. These industries involve controlling the liquid level and the flow rate in the presence of nonlinearity and disturbance which justifies the use of adaptive techniques such as DMRAC control scheme. For this purpose, mathematical models are obtained for each of the input-output combinations using white box approach and the respective controllers are developed. A detailed analysis on the performance of the chosen process with these controllers is carried out. Simulation studies reveal the effectiveness of proposed controller for multivariable process that exhibits nonlinear behaviour.


2021 ◽  
Vol 11 (13) ◽  
pp. 6224
Author(s):  
Qisong Zhou ◽  
Jianzhong Tang ◽  
Yong Nie ◽  
Zheng Chen ◽  
Long Qin

The cable-driven hyper-redundant snake-like manipulator (CHSM) inspired by the biomimetic structure of vertebrate muscles and tendons, which consists of numerous joint units connected adjacently driven by elastic materials with hyper-redundant DOF, performs flexible kinematic skills and competitive compound capability under complicated working circumstances. Nevertheless, the drawback of lacking the ability to perceive the environment to perform intelligently in complex scenarios leaves a lot to be improved, which is the original intention to introduce visual tracking feedback acting as an instructor. In this paper, a cable-driven snake-like robotic arm combined with a visual tracking technique is introduced. A visual tracking approach based on dual correlation filter is designed to guide the CHSM in detecting the target and tracing after its trajectory. Specifically, it contains an adaptive optimization for the scale variation of the tracking target via pyramid sampling. For the CHSM, an explicit kinematics model is derived from its specific geometry relationships and followed by a simplification for the inverse kinematics based on some assumption or limitation. A control scheme is brought up to combine the kinematics with visual tracking via the processing tracking errors. The experimental results with a practical prototype validate the availability of the proposed compound control method with the derived kinematics model.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


Author(s):  
Mohan Santhakumar ◽  
Jinwhan Kim

This paper proposes a new tracking controller for autonomous underwater vehicle-manipulator systems (UVMSs) using the concept of model reference adaptive control. It also addresses the detailed modeling and simulation of the dynamic coupling between an autonomous underwater vehicle and manipulator system based on Newton–Euler formulation scheme. The proposed adaptation control algorithm is used to estimate the unknown parameters online and compensate for the rest of the system dynamics. Specifically, the influence of the unknown manipulator mass on the control performance is indirectly captured by means of the adaptive control scheme. The effectiveness and robustness of the proposed control scheme are demonstrated using numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document