scholarly journals Effect of Human Mesenchymal Stem Cells on Xenogeneic T and B Cells Isolated from Lupus-Prone MRL.Faslpr Mice

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hong Kyung Lee ◽  
Eun Young Kim ◽  
Hyung Sook Kim ◽  
Eun Jae Park ◽  
Hye Jin Lee ◽  
...  

Systemic lupus erythematosus (SLE) is an autoimmune disease, which is characterized by hyperactivation of T and B cells. Human mesenchymal stem cells (hMSCs) ameliorate the progression of SLE in preclinical studies using lupus-prone MRL.Faslpr mice. However, whether hMSCs inhibit the functions of xenogeneic mouse T and B cells is not clear. To address this issue, we examined the in vitro effects of hMSCs on T and B cells isolated from MRL.Faslpr mice. Naïve hMSCs inhibited the functions of T cells but not B cells. hMSCs preconditioned with IFN-γ (i) inhibited the proliferation of and IgM production by B cells, (ii) attracted B cells for cell–cell interactions in a CXCL10-dependent manner, and (iii) inhibited B cells by producing indoleamine 2,3-dioxygenase. In summary, our data demonstrate that hMSCs exert therapeutic activity in mice in three steps: first, naïve hMSCs inhibit the functions of T cells, hMSCs are then activated by IFN-γ, and finally, they inhibit B cells.

2007 ◽  
Vol 74 (2) ◽  
pp. S217 ◽  
Author(s):  
Tomas Dallos ◽  
Monika Krivosikova ◽  
Lukasz Luszczyna ◽  
Magdalena Chorazy-Massalska ◽  
Ewa Warnawin ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1660 ◽  
Author(s):  
Claudia Terraza-Aguirre ◽  
Mauricio Campos-Mora ◽  
Roberto Elizondo-Vega ◽  
Rafael A. Contreras-López ◽  
Patricia Luz-Crawford ◽  
...  

Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an attenuated immune response characterized by a reduced frequency of Th17 cells and the generation of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate, and exchange information through different ways such as cell-to-cell contact, secretion of soluble factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue between MSC and Th17 well described by their phenotypic and functional plasticity.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 350-350
Author(s):  
Dongchang Zhao ◽  
Chunyan Zhang ◽  
Tangsheng Yi ◽  
Chia-Lei Lin ◽  
Ivan Todorov ◽  
...  

Abstract The αEβ7 integrin CD103 is an excellent marker for identifying in vivo activated CD4+ regulatory T (Treg) cells. CD103− naive Treg cells from donors are effective in prevention but ineffective in treatment of graft versus host disease (GVHD). It is unknown whether in vivo activated donor CD103+ Treg cells can effectively treat ongoing GVHD. We have recently reported a new chronic GVHD model, in which donor DBA/2 (H-2d) spleen cells were transferred to the irradiated BALB/c (H-2d) recipients. The recipients showed chronic GVHD-like syndrome with high-levels of serum autoantibodies, proteinuria, and hair-loss, and the disease induction required both donor CD4+ T and B cells in a cell dose dependent manner (Blood, 2006). In the current studies, we observed that the percentage of CD103+ cells among donor CD4+ T cells in the recipients without disease was up to 45% and was more than two fold higher than that of the recipients with disease. The CD103+CD4+ T cells were more than 97% FoxP3+, which was similar to natural CD25hi Treg cells, but the former expressed markedly higher levels of CCR5 as compared to the latter. The CD103+ Treg cells showed markedly stronger suppression capacity as compared to freshly isolated as well as in vitro anti-CD3-activated CD25hi natural Treg cells. When injected into ongoing chronic GVHD recipients with severe proteinuria, CD103+ Treg cells (1x106) reversed proteinuria and tissue damages in 92% (11/12) of the recipients, and the recipients survived for more than 100 days. In contrast, the in vitro activated natural Treg cells reversed disease in only 25% (2/8) of the recipients, and the freshly isolated CD25hi natural Treg cells reversed none (0/12), and the treated recipients died within 45 days, which was similar to control PBS treated recipients. Furthermore, we found that infusion of the CD103+ Treg cells significantly reduced CD138+ antibody-secreting plasma cells in spleen and reduced serum levels of autoantibodies; and that infusion of the CD103+ Treg cells also significantly reduced CD44loCD62LhiSCA-1hi post-mitotic CD4+ T memory stem cells in spleen as well as pathogenic IFN-γ+CD4+ T cells in liver and nephritogenic IFN-γ+IL-10+CD4+ T cells in kidney tissues. Our results indicate that, different from CD103− naive natural Treg cells that prevent GVHD via suppressing donor T cell activation and expansion, CD103+ Treg cells ameliorate ongoing chronic GVHD via reducing activated pathogenic T and B cells.


2016 ◽  
Vol 879 ◽  
pp. 2444-2449 ◽  
Author(s):  
Ekaterina Chudinova ◽  
Maria Surmeneva ◽  
Andrey Koptioug ◽  
Irina V. Savintseva ◽  
Irina Selezneva ◽  
...  

Custom orthopedic and dental implants may be fabricated by additive manufacturing (AM), for example using electron beam melting technology. This study is focused on the modification of the surface of Ti6Al4V alloy coin-like scaffolds fabricated via AM technology (EBM®) by radio frequency (RF) magnetron sputter deposition of hydroxyapatite (HA) coating. The scaffolds with HA coating were characterized by Scanning Electron microscopy, X-ray diffraction. HA coating showed a nanocrystalline structure with the crystallites of an average size of 32±9 nm. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells was studied using biological short-term tests in vitro. In according to in vitro assessment, thin HA coating stimulated the attachment and proliferation of cells. Human mesenchymal stem cells cultured on the HA-coated scaffold also formed mineralized nodules.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 230.2-231
Author(s):  
A. Pappalardo ◽  
E. Wojciechowski ◽  
I. Odriozola ◽  
I. Douchet ◽  
N. Merillon ◽  
...  

Background:Neutrophils have been described as potent antigen-presenting cells able to activate T cells by MHC/TCR interaction and costimulatory molecules in tumor immunity. However, little is known about the direct interaction between neutrophils and CD4 T cells with respect to systemic lupus erythematosus (SLE). We have previously shown that OX40L expressed by monocytes from SLE patients promote the differentiation of naïve and memory cells into IL21 secreting T cells that are able to help B cells1,2.Objectives:In this study, we investigate OX40L expression on neutrophils from SLE patients and contribution of these OX40L+neutrophils in SLE pathogenesis to modulation of the B cell helper role of CD4 T cells.Methods:Surface expression of co-stimulatory molecules (OX40L, ICOSL, GITRL, 4-1BBL) on neutrophils from SLE patients and healthy donors (HD) was measured by flow cytometry (FC). Neutrophils from HD were stimulated with TLR7 or TLR8 agonists and IFNα after 5 hours of culture, OX40L expression was measured by FC and Western Blotting. CD4 T cells were cultured with the stimulated neutrophils for 3 days. At the end of the co-culture, percentages of IL21-expressing T follicular (Tfh) and peripheral helper (Tph) cells measured by FC. These generated T cells were also cultured in the presence of memory B cells. After 5 days of co-culture, plasmablast generation and Ig levels were assessed by FC and ELISA, respectively. Inhibition of OX40-OX40L interaction in vitro was achieved using ISB 830, a novel anti-OX40 mAb currently used in clinical trials.Results:Among the co-stimulatory molecules tested, percentages of OX40L+neutrophils in SLE (n=54) were increased compared to HD (n=25)(mean + SD: HD = 1,34%±1.62 vs SLE = 4,53%±8.1; p=0.29). OX40L expression positively correlated with SLE disease activity score (SLEDAI) (p = 0,04; r = 0,31) and with anti-DNA antibodies (p= 0,04, r = 0,33). Of note, the percentage of OX40L+neutrophils was higher in anti-sm-RNP+patients (n=16, mean= 9%±9.8), compared to anti-sm-RNP-patients (n=27, mean = 1,4%±2.5; p = 0,02). The percentage of OX40L+neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or IFNα priming followed by TLR7 agonist. When memory CD4 T cells were cultured in the presence of TLR8-stimulated neutrophils, the proportion of IL21-expressing Tfh (CXCR5+PD1+) and Tph (CXCR5-PD1hi) were increased, compared to culture with unstimulated neutrophils. This process was dependent on OX40-OX40L interactions, since in vitro treatment with the anti-OX40 blocking antibody ISB 830, inhibited the differentiation of memory T cells into Tfh and Tph. Both generated Tfh and Tph were able to promote the differentiation of memory B cells into Ig-secreting plasmablasts.Conclusion:Our results disclose an unprecedented phenomenon where cross-talk between TLR7/8-activated neutrophils and CD4 lymphocytes operates through OX40L-OX40 costimulation, and neutrophils promote the differentiation of pro-inflammatory Tfh and Tph, as well as IL21 production. Therefore, OX40L/OX40 should be considered as a potentially therapeutic axis in SLE patients.References:[1]Jacquemin et al. Immunity 2015;[2]Jacquemin et al. JCI Insight 2018Disclosure of Interests:Angela Pappalardo Grant/research support from: Ichnos Sciences, Elodie Wojciechowski: None declared, Itsaso Odriozola: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Estibaliz Lazaro: None declared, Marie-Agnes Doucey Employee of: Ichnos Sciences, Lamine Mbow Employee of: Ichnos Sciences, Christophe Richez Consultant of: Abbvie, Amgen, Mylan, Pfizer, Sandoz and UCB., Patrick Blanco Grant/research support from: Ichnos Sciences


2021 ◽  
Vol 95 (2) ◽  
pp. 727-747
Author(s):  
Simone Rothmiller ◽  
Niklas Jäger ◽  
Nicole Meier ◽  
Thimo Meyer ◽  
Adrian Neu ◽  
...  

AbstractWound healing is a complex process, and disturbance of even a single mechanism can result in chronic ulcers developing after exposure to the alkylating agent sulfur mustard (SM). A possible contributor may be SM-induced chronic senescent mesenchymal stem cells (MSCs), unable to fulfil their regenerative role, by persisting over long time periods and creating a proinflammatory microenvironment. Here we show that senescence induction in human bone marrow derived MSCs was time- and concentration-dependent, and chronic senescence could be verified 3 weeks after exposure to between 10 and 40 µM SM. Morphological changes, reduced clonogenic and migration potential, longer scratch closure times, differences in senescence, motility and DNA damage response associated genes as well as increased levels of proinflammatory cytokines were revealed. Selective removal of these cells by senolytic drugs, in which ABT-263 showed initial potential in vitro, opens the possibility for an innovative treatment strategy for chronic wounds, but also tumors and age-related diseases.


Injury ◽  
2006 ◽  
Vol 37 (3) ◽  
pp. S33-S42 ◽  
Author(s):  
Lucy DiSilvio ◽  
Jacqueline Jameson ◽  
Zakareya Gamie ◽  
Peter V. Giannoudis ◽  
Eleftherios Tsiridis

Sign in / Sign up

Export Citation Format

Share Document