scholarly journals Analysis of Rock β-Dynamic Parameters and the Stability of Earthquake Dangerous Rocks Based on PFC

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yun Tian ◽  
Lin-feng Wang ◽  
Biao Zeng ◽  
Hong-hua Jin

Mesoparameters of rock materials are the main factors affecting the macromechanical properties of dangerous rock slopes. Based on the principle of particle flow and synthetic rock mass technology (SRM), the influence of mesoparameters on macromechanical properties is investigated by calibrating mesoparameters of rock materials at depth for a rock sequence in Beichuan Qiang Autonomous County, Sichuan Province, China. By combining these parameters with conventional and dynamic cycle triaxial tests, sensitivity analysis of rock β-parameters was completed. As a result, the reliability of mesoparameters in the simulation of dangerous rocks is strengthened, providing a basis to examine the failure mechanism of earthquake dangerous rocks in this region. Results indicate that, in the triaxial test, sandstone failed in tension, and brittleness gradually weakened as confining pressure increased. Mudstone recorded shear failure, and the characteristic value of brittle attenuation showed a V-shaped change with increasing confining pressure. Under cyclic loading, cracks had a degrading effect on the damping ration (β) and the damping coefficient (C) of sandstone. Mudstone recorded relatively low β and low brittleness whilst sandstone had high β and high brittleness. In rock materials, β n is more sensitive than β s in mechanical properties. When the value of the β n -parameter was between 0.2 and 0.3 and the value of the β s -parameter was between 0.2 and 0.6, rock brittleness was more stable, and the reflected macroscopic mechanical properties were the most authentic. By using a deepened mesoparameter trial adjustment method, the failure mode of the Particle Flow Code (PFC) dangerous rock model near provincial highway 205, simulated under conditions for the Wenchuan earthquake, indicated a tensile fracture-horizontal slip failure. The simulated failure mode was consistent with that of real dangerous rocks, with the failure trend being concentrated between the first and the third layer of the rock mass.

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1662 ◽  
Author(s):  
Jianguo Wang ◽  
Bowen Hu ◽  
Jia Hwei Soon

The variation of physical and mechanical properties of the lightweight bulk filling material with cement and expanded polystyrene (EPS) beads contents under different confining pressures is important to construction and geotechnical applications. In this study, a lightweight bulk filling material was firstly fabricated with Singapore marine clay, ordinary Portland cement and EPS. Then, the influences of EPS beads content, cement content, curing time and confining pressure on the mass density, stress–strain behavior and compressive strength of this lightweight bulk filling material were investigated by unconsolidated and undrained (UU) triaxial tests. In these tests, the mass ratios of EPS beads to dry clay (E/S) were 0%, 0.5%, 1%, 2%, and 4% and the mass ratios of cement to dry clay (C/S) were 10% and 15%. Thirdly, a series of UU triaxial tests were performed at a confining pressure of 0 kPa, 50 kPa, 100 kPa, and 150 kPa after three curing days, seven curing days, and 28 curing days. The results show that the mass density of this lightweight bulk filling material was mainly controlled by the E/S ratio. Its mass density decreased by 55.6% for the C/S ratio 10% and 54.9% for the C/S ratio 15% when the E/S ratio increased from 0% to 4% after three curing days. Shear failure more easily occurred in the specimens with higher cement content and lower confining pressure. The relationships between compressive strength and mass density or failure strain could be quantified by the power function. Increasing cement content and reducing EPS beads content will increase mass density and compressive strength of this lightweight bulk filling material. The compressive strength with curing time can be expressed by a logarithmic function with fitting correlation coefficient ranging from 0.83 to 0.97 for five confining pressures. These empirical formulae will be useful for the estimation of physical and mechanical properties of lightweight concretes in engineering application.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246815
Author(s):  
Honggang Zhao ◽  
Haitao Sun ◽  
Dongming Zhang ◽  
Chao Liu

Two kinds of common tunnel shapes, i.e. elliptical opening and square opening were selected for biaxial compression tests, and the influences of two kinds of opening shapes on the mechanical properties, failure characteristics and failure modes of sandstone were compared and analyzed. The complex variable theory and mapping functions were used to obtain the analytical stress solution around elliptical and square openings. The results show that the stability of the specimen containing an elliptical opening was better than that of the specimen containing a square opening under the same lateral stress. Compared with the elliptical opening, the local damage was formed earlier in the square opening which might be caused by a higher stress concentration around the square opening. The stress distributions around openings were influenced by the opening shape and lateral stress coefficient. The top and bottom of square opening were more prone to tensile fracture, and the distribution range of tensile was larger than that of elliptical opening. When the opening failed, the intensity of square opening failure was weaker than that of elliptical opening. On the basis of the average frequency value and the rise angle value, the failure mode of specimen containing elliptical or square opening was distinguished. It was found that the mixed tension and shear failure dominated the failure of specimens with different opening shapes, and the number of shear cracks in the specimen containing a square opening was greater than that in the specimen containing an elliptical opening. The above method of judging failure mode by acoustic emission signals was well verified by the CT images of damaged specimens.


10.6036/10055 ◽  
2021 ◽  
Vol 96 (3) ◽  
pp. 309-315
Author(s):  
Lijie Long ◽  
Dongyan Liu ◽  
Dong Wang ◽  
Jin Li

ABSTRACT: The deformation and fracture of rock mass in deep rock mass engineering are affected by the coupling of temperature, seepage, and stress. A test and a calculation model for sandstone under thermal–hydrological–mechanical (THM) coupling were proposed to reveal the mechanical properties of sandstone. The law of coupling for mechanical indicators of sandstone was established by laboratory tests and numerical simulations. The permeability, peak strength, peak strain, residual strength, elastic modulus, plastic deformation area, and stress–strain cloud diagram were analyzed by the steady state seepage method and THM coupling principle, and the accuracy of the model was verified. Results demonstrate that: (1) As the temperature rises and the peak deformation increases, the sample slowly drops to the residual strength level after the peak stress. (2) The main factor that affects peak strength is confining pressure. In the temperature range of 25 °C–50 °C, the maximum peak strength and peak deformation are increased by heating, and the increases in confining pressure and temperature reduce the reduction coefficient of the residual strength. Moreover, the elastic modulus increases with the increase in confining pressure, but it shows a downward trend when the temperature increases. (3) The plastic deformation zone and stress–strain cloud diagram indicated that when the temperature and osmotic pressure increase, the specimen enters the plastic zone earlier, the effective plastic zone increases, the stress increases, and the deformation is intensified. The proposed method provides a certain reference for the permeability and stability evaluation of rock mass under the conditions of “three-high” (high confining pressure, high hydraulic pressure, and high stress) engineering. Keywords: temperature–seepage–stress coupling, sandstone, mechanical properties


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2968
Author(s):  
Yong Yuan ◽  
Changtai Zhou ◽  
Zhihe Wang ◽  
Jifang Du

It is widely accepted that the mechanical properties and failure behaviours of a rock mass are largely dependent upon the geometrical and mechanical properties of discontinuities. The effect of joint elasticity on the failure behaviours of rock masses is investigated using a discrete element model, namely, the synthetic rock mass model. Here, uniaxial compression tests of the numerical model are carried out for the rock mass model with a persistent joint to analyse the role of joint elasticity in the failure process with various joint orientations, β. A strong correlation between the joint elasticity and failure strength is found from the simulation results: a positive relationship when the joint orientation β < φ j ; a negative relationship when the joint orientation φ j < β < 90 ° ; and a very limited effect when the joint orientation β = 90 ° . Additionally, it is shown that the joint elasticity is the governing factor in the transition of failure modes, especially from the sliding failure mode along the joint to the mixed sliding-tensile failure mode.


2018 ◽  
Vol 21 (1) ◽  
Author(s):  
Juan Hou ◽  
Mengxi Zhang ◽  
Qiang Chen ◽  
Dong Wang ◽  
Akbar Javadi ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Huilin Le ◽  
Shaorui Sun ◽  
Feng Zhu ◽  
Haotian Fan

Flaws existing in rock mass are one of the main factors resulting in the instability of rock mass. Epoxy resin is often used to reinforce fractured rock mass. However, few researches focused on mechanical properties of the specimens with a resin-infilled flaw under triaxial compression. Therefore, in this research, epoxy resin was selected as the grouting material, and triaxial compression tests were conducted on the rock-like specimens with a grout-infilled flaw having different geometries. This study draws some new conclusions. The high confining pressure suppresses the generation of tensile cracks, and the failure mode changes from tensile-shear failure to shear failure as the confining pressure increases. Grouting with epoxy resin leads to the improvement of peak strengths of the specimens under triaxial compression. The reinforcement effect of epoxy resin is better for the specimens having a large flaw length and those under a relatively low confining pressure. Grouting with epoxy resin reduces the internal friction angle of the samples but improves their cohesion. This research may provide some useful insights for understanding the mechanical behaviors of grouted rock masses.


Sign in / Sign up

Export Citation Format

Share Document