scholarly journals Identification and Verification of Biomarker in Clear Cell Renal Cell Carcinoma via Bioinformatics and Neural Network Model

2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Bin Liu ◽  
Yu Xiao ◽  
Hao Li ◽  
Ai-li Zhang ◽  
Ling-bing Meng ◽  
...  

Background. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, which represents the 9th most frequently diagnosed cancer. However, the molecular mechanism of occurrence and development of ccRCC is indistinct. Therefore, the research aims to identify the hub biomarkers of ccRCC using numerous bioinformatics tools and functional experiments. Methods. The public data was downloaded from the Gene Expression Omnibus (GEO) database, and the differently expressed genes (DEGs) between ccRCC and normal renal tissues were identified with GEO2R. Protein-protein interaction (PPI) network of the DEGs was constructed, and hub genes were screened with cytoHubba. Then, ten ccRCC tumor samples and ten normal kidney tissues were obtained to verify the expression of hub genes with the RT-qPCR. Finally, the neural network model was constructed to verify the relationship among the genes. Results. A total of 251 DEGs and ten hub genes were identified. AURKB, CCNA2, TPX2, and NCAPG were highly expressed in ccRCC compared with renal tissue. With the increasing expression of AURKB, CCNA2, TPX2, and NCAPG, the pathological stage of ccRCC increased gradually (P<0.05). Patients with high expression of AURKB, CCNA2, TPX2, and NCAPG have a poor overall survival. After the verification of RT-qPCR, the expression of hub genes was same as the public data. And there were strong correlations between the AURKB, CCNA2, TPX2, and NCAPG with the verification of the neural network model. Conclusion. After the identification and verification, AURKB, CCNA2, TPX2, and NCAPG might be related to the occurrence and malignant progression of ccRCC.

Author(s):  
Daiga Deksne ◽  
Raivis Skadiņš

This paper reports on the development of a toolkit that enables collecting dialog corpus for end-to-end goal-oriented dialog system training. The toolkit includes the neural network model that interactively learns to predict the next virtual assistant (VA) action from the conversation history. We start with exploring methods for VA dialog scenario learning from examples after we perform several experiments with the English DSTC dialog sets in order to find the optimal strategy for neural model training. The chosen algorithm is used for training the next action prediction model for the Latvian dialogs in the public transport inquiries domain collected using the platform. The accuracy for the English and the Latvian dialog models is similar – 0.84 and 0.86. This shows that the chosen method for neural network model training is language independent.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Quan ◽  
Yuchen Bai ◽  
Yunbei Yang ◽  
Er Lei Han ◽  
Hong Bai ◽  
...  

Abstract Background The molecular prognostic biomarkers of clear cell renal cell carcinoma (ccRCC) are still unknown. We aimed at researching the candidate biomarkers and potential therapeutic targets of ccRCC. Methods Three ccRCC expression microarray datasets (include GSE14762, GSE66270 and GSE53757) were downloaded from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) between ccRCC and normal tissues were explored. The potential functions of identified DEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). And then the protein - protein interaction network (PPI) was established to screen the hub genes. After that, the expressions of hub genes were identified by the oncomine database. The hub genes’ prognostic values of patients with ccRCC were analyzed by GEPIA database. Results A total of 137 DEGs were identified by utilizing the limma package and RRA method, including 63 upregulated genes and 74 downregulated genes. It is found that 137 DEGs were mainly enriched in 82 functional terms and 24 pathways in accordance with the research results. Thirteen highest-scoring genes were screened as hub genes (include 10 upregulated genes and 3 downregulated candidate genes) by utilizing the PPI network and module analysis. Through integrating the oncoming database and GEPIA database, the author found that C3 and CXCR4 are not only overexpressed in ccRCC, but also associated with the prognosis of ccRCC. Further results could reveal that patients with high C3 expression had a poor overall survival (OS), while patients with high CTSS and TLR3 expressions had a good OS; patients with high C3 and CXCR4 expressions had a poor disease-free survival (DFS), while ccRCC patients with high TLR3 expression had a good DFS. Conclusion These findings suggested that C3 and CXCR4 were the candidate biomarkers and potential therapeutic targets of ccRCC patients.


Author(s):  
Mostafa H. Tawfeek ◽  
Karim El-Basyouny

Safety Performance Functions (SPFs) are regression models used to predict the expected number of collisions as a function of various traffic and geometric characteristics. One of the integral components in developing SPFs is the availability of accurate exposure factors, that is, annual average daily traffic (AADT). However, AADTs are not often available for minor roads at rural intersections. This study aims to develop a robust AADT estimation model using a deep neural network. A total of 1,350 rural four-legged, stop-controlled intersections from the Province of Alberta, Canada, were used to train the neural network. The results of the deep neural network model were compared with the traditional estimation method, which uses linear regression. The results indicated that the deep neural network model improved the estimation of minor roads’ AADT by 35% when compared with the traditional method. Furthermore, SPFs developed using linear regression resulted in models with statistically insignificant AADTs on minor roads. Conversely, the SPF developed using the neural network provided a better fit to the data with both AADTs on minor and major roads being statistically significant variables. The findings indicated that the proposed model could enhance the predictive power of the SPF and therefore improve the decision-making process since SPFs are used in all parts of the safety management process.


2011 ◽  
Vol 213 ◽  
pp. 419-426
Author(s):  
M.M. Rahman ◽  
Hemin M. Mohyaldeen ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
Rosli A. Bakar

Modeling and simulation are indispensable when dealing with complex engineering systems. This study deals with intelligent techniques modeling for linear response of suspension arm. The finite element analysis and Radial Basis Function Neural Network (RBFNN) technique is used to predict the response of suspension arm. The linear static analysis was performed utilizing the finite element analysis code. The neural network model has 3 inputs representing the load, mesh size and material while 4 output representing the maximum displacement, maximum Principal stress, von Mises and Tresca. Finally, regression analysis between finite element results and values predicted by the neural network model was made. It can be seen that the RBFNN proposed approach was found to be highly effective with least error in identification of stress-displacement of suspension arm. Simulated results show that RBF can be very successively used for reduction of the effort and time required to predict the stress-displacement response of suspension arm as FE methods usually deal with only a single problem for each run.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3213 ◽  
Author(s):  
Amr Hassan ◽  
Abdel-Rahman Akl ◽  
Ibrahim Hassan ◽  
Caroline Sunderland

Predicting the results of soccer competitions and the contributions of match attributes, in particular, has gained popularity in recent years. Big data processing obtained from different sensors, cameras and analysis systems needs modern tools that can provide a deep understanding of the relationship between this huge amount of data produced by sensors and cameras, both linear and non-linear data. Using data mining tools does not appear sufficient to provide a deep understanding of the relationship between the match attributes and results and how to predict or optimize the results based upon performance variables. This study aimed to suggest a different approach to predict wins, losses and attributes’ sensitivities which enables the prediction of match results based on the most sensitive attributes that affect it as a second step. A radial basis function neural network model has successfully weighted the effectiveness of all match attributes and classified the team results into the target groups as a win or loss. The neural network model’s output demonstrated a correct percentage of win and loss of 83.3% and 72.7% respectively, with a low Root Mean Square training error of 2.9% and testing error of 0.37%. Out of 75 match attributes, 19 were identified as powerful predictors of success. The most powerful respectively were: the Total Team Medium Pass Attempted (MBA) 100%; the Distance Covered Team Average in zone 3 (15–20 km/h; Zone3_TA) 99%; the Team Average ball delivery into the attacking third of the field (TA_DAT) 80.9%; the Total Team Covered Distance without Ball Possession (Not in_Poss_TT) 76.8%; and the Average Distance Covered by Team (Game TA) 75.1%. Therefore, the novel radial based function neural network model can be employed by sports scientists to adapt training, tactics and opposition analysis to improve performance.


Sign in / Sign up

Export Citation Format

Share Document