scholarly journals Surface Modification of Activated Carbon Fibers with Fe3O4 for Enhancing Their Electromagnetic Wave Absorption Property

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xuefeng Yan ◽  
Tao Ji ◽  
Wei Ye

In this study, the porous activated carbon fiber (ACF) is prepared by viscose fiber, and Fe3O4 coating is deposited on the surface of ACF through in situ hybridization to prepare carbon/magnetic electromagnetic (EM) wave absorption materials. Compared with pure Fe3O4 and ACF, the EM wave absorption rate is improved. When the solubility of FeCl3 is 2 mol/L and the thickness of the prepared ACF–Fe3O4(3) EM wave absorption material is 3 mm, the EM wave loss at 10 GHz reaches −44.3 dB and effective EM wave absorption bandwidths ( reflection   loss   RL < − 10  dB and RL < − 20  dB) reached 4.8 GHz (8.8–13.6 GHz) and 1.1 GHz (9.3–10.4 GHz), respectively. The prepared ACF-based composite material has a light structure and strong absorption bandwidth. Findings can provide references for the research on other EM wave-absorbing materials.

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1794 ◽  
Author(s):  
Konstantinos V. Plakas ◽  
Athina Taxintari ◽  
Anastasios J. Karabelas

The synthesis, characterization, and performance of composite photocatalytic adsorbents are investigated in this work using the dip-coating and the electrophoretic coating methods for the deposition of titanium dioxide (TiO2) on porous activated carbon fiber (ACF) substrates. The adsorption and photocatalytic efficiency of the synthesized catalytic adsorbents were compared using phenol as the model pollutant. Both immobilization techniques resulted in composite ACF/TiO2 adsorbents characterized by large surface area (844.67 ± 45.58 m2 g−1), uniform distribution of TiO2 nanoparticles on the activated carbon fibers, and high phenol adsorption. The method and the treatment time affected the phenol adsorption, while the highest sorption was determined in the case of the ACF/TiO2 sample prepared by the electrophoretic coating method (at 20 V) for an electrolysis time of 120 s (7.93 mgphenol g−1ACF/TiO2). The UV-A irradiation of most ACF/TiO2 samples led to a faster removal of phenol from water as a result of the combined sorption and heterogeneous photocatalysis. The stability and the effective regeneration of the most promising composite photocatalytic adsorbent was proved by multiple filtration and UV-A irradiation cycles.


RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24665-24672 ◽  
Author(s):  
Chencheng Zhang ◽  
Pingfang Han ◽  
Xiaoping Lu ◽  
Qinghui Mao ◽  
Jiangang Qu ◽  
...  

Herein, we describe the hydrothermal immobilization of BiVO4 on activated carbon fibers, using Reactive Black KN-B photocatalytic performance evaluation and establishing the experimental conditions yielding maximalphotocatalytic activity.


2020 ◽  
Vol 281 ◽  
pp. 128662
Author(s):  
Thuan Ngoc Vo ◽  
Tai Duc Tran ◽  
Hoang Kha Nguyen ◽  
Do Yun Kong ◽  
Moon Il Kim ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 14819-14825 ◽  
Author(s):  
Kai Zhu ◽  
Yu Wang ◽  
Joel A. Tang ◽  
Hailong Qiu ◽  
Xing Meng ◽  
...  

MnO2 nanosheets were successfully grown in situ on the surface of activated carbon fibers (ACFs) via a facile microwave-assisted hydrothermal method.


2013 ◽  
Vol 373-375 ◽  
pp. 2019-2023
Author(s):  
Quan Li Feng ◽  
Chen Xu Wang ◽  
Xue Qian Wang ◽  
Ping Ning

The purpose of this work was to explore the application of microwaves for the regeneration of activated carbon fibers saturated with ethanol under vacuum condition. The efficacy of the regeneration was analyzed by the rate of desorption and mass loss. When the microwave power was 680W , the dosage of activated carbon fiber was 3.5g , the degree of vacuum is 0.05MPa and the microwave irradiation time was 180s, the desorption rate was up to 95.3% and the outlet concentration of ethanol was 97.5%. The adsorption of activated carbon fiber after microwave regeneration for many times was larger than the fresh activated carbon fiber. And the rate of total mass loss was 3.54%.


2012 ◽  
Vol 610-613 ◽  
pp. 1710-1717
Author(s):  
Gui Zhong Zhou ◽  
Xuan Wang ◽  
Zhao Feng Wang ◽  
Shu Qing Pan ◽  
Shao Xiang Li

The activated carbon fiber(ACF) electrodes were prepared for electrosorption desalination. The electrodes were analyzed using scanning electron microscope (SEM), and the desalting efficiency was represented by the removal rate of Cl-. As a result, desalting efficiency decreases with increasing initial concentration of Cl-, whereas the total adsorption capacity increases. The most suitable voltage for electrosorption desalination is 1.2 ~ 1.4V. The electrosorption desalination achieves the best results while the distance between two electrodes is 1.0cm. Electrosorption plays a more important role in the adsorption process compared with physical adsorption. The removal rate of Cl- is obviously improved by using ACF electrode modified by HNO3 and KOH and desalination ratio of the electrode treated with KOH is increased by 16.5%. Therefore, the ACF electrode would be suitable for using in the application of electrosorption desalination.


1994 ◽  
Vol 344 ◽  
Author(s):  
Yun Lu ◽  
Ruowen Fu ◽  
Yishan Chen ◽  
Hanmin Zeng

AbstractCopper-series, nickel-series, and copper-cobalt composite-series catalysts supported on activated carbon fiber were prepared in this paper. Their structures and catalytic activities for the reduction of nitric oxide with ammonia were investigated simultaneously.


2014 ◽  
Vol 986-987 ◽  
pp. 13-16
Author(s):  
Qin Yuan ◽  
Hong Hong Yi ◽  
Xiao Long Tang ◽  
Kai Li ◽  
Fen Rong Li ◽  
...  

In this paper, activated carbon fibers were modified by different chemical reagents. The modified adsorbents were used to investigate adsorption and separation performance of CO2/CH4 gases mixture, and then it could get the best modified adsorbent. The experimental results show that amine can't great grafting on activated carbon fiber. Compared with blank activated carbon fibers, the adsorption property of CO2 did not have much influence on the activated carbon fiber modified by amine. However, it can increase the nitrogen functional groups and the specific surface area on the surface of activated carbon fiber that were modified with nitric acid and ammonia. The above two points were conductive to the adsorption and separation of CO2/CH4 mixture gases.


Sign in / Sign up

Export Citation Format

Share Document