scholarly journals lncRNA CASC2 Enhances 131I Sensitivity in Papillary Thyroid Cancer by Sponging miR-155

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ling Tao ◽  
Ping Tian ◽  
Li Yang ◽  
Xiangyang Guo

Long noncoding RNA cancer susceptibility candidate 2 (CASC2) has been reported to play an anticancer role in papillary thyroid cancer (PTC). Radioiodine (131I) is a common option for the treatment of PTC. However, the role and mechanism of CASC2 in 131I sensitivity remain unclear. In this study, 131I-resistant cells were constructed through continuous treatment of 131I. The expression levels of CASC2 and miR-155 were measured by qRT-PCR. The IC50 of 131I was analyzed by cell viability using MTT assay. Flow cytometry was conducted to determine cell apoptosis induced by 131I. The association between CASC2 and miR-155 was evaluated by luciferase assay and RNA immunoprecipitation. A mouse xenograft model was built to explore the effect of CASC2 on the growth of 131I-resistant PTC cells in vivo. Results showed that CASC2 expression was decreased in PTC tissues and cells, and low expression of CASC2 was associated with poor outcome of patients. CASC2 level was reduced in 131I-resistant cells. Knockdown of CASC2 inhibited 131I sensitivity in thyroid cancer cells. Overexpression of CASC2 enhanced 131I sensitivity in constructed resistant PTC cells. CASC2 was a decoy of miR-155, and CASC2-mediated promotion of 131I sensitivity was weakened by decreasing miR-155. Abundance of CASC2 inhibited the growth of 131I-resistant cells in vivo. As a conclusion, CASC2 increases 131I sensitivity in PTC by sponging miR-155, providing a novel target for the treatment of thyroid cancer patients with 131I resistance.

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Xiaoping Zhang ◽  
Dan Li ◽  
Chengyou Jia ◽  
Haidong Cai ◽  
Zhongwei Lv ◽  
...  

Abstract Background Papillary thyroid cancer (PTC) is the most common type of cancer of the endocrine system. Long noncoding RNAs (lncRNAs) are emerging as a novel class of gene expression regulators associated with tumorigenesis. Through preexisting databases available for differentially expressed lncRNAs in PTC, we uncovered that lncRNA OIP5-AS1 was significantly upregulated in PTC tissues. However, the function and the underlying mechanism of OIP5-AS1 in PTC are poorly understood. Methods Expression of lncRNA OIP5-AS1 and miR-98 in PTC tissue and cells were measured by quantitative real-time PCR (qRT-PCR). And expression of METTL14 and ADAMTS8 in PTC tissue and cells were measured by qRT-PCR and western blot. The biological functions of METTL14, OIP5-AS1, and ADAMTS8 were examined using MTT, colony formation, transwell, and wound healing assays in PTC cells. The relationship between METTL14 and OIP5-AS1 were evaluated using RNA immunoprecipitation (RIP) and RNA pull down assay. And the relationship between miR-98 and ADAMTS8 were examined by luciferase reporter assay. For in vivo experiments, a xenograft model was used to investigate the effects of OIP5-AS1 and ADAMTS8 in PTC. Results Functional validation revealed that OIP5-AS1 overexpression promotes PTC cell proliferation, migration/invasion in vitro and in vivo, while OIP5-AS1 knockdown shows an opposite effect. Mechanistically, OIP5-AS1 acts as a target of miR-98, which activates ADAMTS8. OIP5-AS1 promotes PTC cell progression through miR-98/ADAMTS8 and EGFR, MEK/ERK pathways. Furthermore, RIP and RNA pull down assays identified OIP5-AS1 as the downstream target of METTL14. Overexpression of METTL14 suppresses PTC cell proliferation and migration/invasion through inhibiting OIP5-AS1 expression and regulating EGFR, MEK/ERK pathways. Conclusions Collectively, our findings demonstrate that OIP5-AS1 is a METTL14-regulated lncRNA that plays an important role in PTC progression and offers new insights into the regulatory mechanisms underlying PTC development.


Author(s):  
Wei Zhang ◽  
Ting Liu ◽  
Tianshu Li ◽  
Xudong Zhao

Abstract As important modulators in various physiological processes, circular RNAs (circRNAs) have been increasingly demonstrated in tumors, including papillary thyroid cancer (PTC). Hsa_circRNA_102002 (circ_102002) is a circRNA derived from alternative splicing of ubiquitin-specific peptidase 22 (USP22) transcript, the role of which needs further investigation. Our results suggested the upregulation of circ_102002 in PTC tissues and cells, and its promoting effects on epithelial–mesenchymal transition (EMT) and cell migration. Mechanism studies showed that circ_102002 could sponge microRNA-488-3p (miR-488-3p) and downregulate its expression. The target relationship between miR-488-3p and hyaluronic acid synthetase 2 (HAS2) in PTC was systematically studied. In addition, our results showed that HAS2 overexpression could restore the inhibited cell EMT and migration. Moreover, the inhibitory effect of downregulation of circ_102002 on PTC growth was evaluated in a mouse xenograft model, which involved miR-488-3p and HAS2 regulation. These findings about the signal axis of circ_102002/miR-488-3p/HAS2 may further elucidate the PTC pathogenesis and improve clinical treatment.


Author(s):  
Ying Ye ◽  
Yanan Song ◽  
Juhua Zhuang ◽  
Saifei He ◽  
Jing Ni ◽  
...  

Long noncoding RNA CCAL has been reported to promote tumor progression in various human cancers, including hepatocellular carcinoma, osteosarcoma, and colorectal cancer. However, the role of CCAL in papillary thyroid cancer remains largely unknown. In the present study, we found that the expression of CCAL was upregulated in papillary thyroid tumor tissues compared to adjacent normal tissues. Moreover, the expression of CCAL was positively related with papillary thyroid cancer severity and TNM stage and predicated poor prognosis. Besides, we found that knockdown of CCAL significantly inhibited papillary thyroid cancer cell proliferation, migration, and invasion in vitro and reduced tumor growth and metastasis in vivo. We found that knockdown of CCAL dramatically decreased the expression of NOTCH1 and suppressed the activation of the NOTCH1 signaling pathway. Furthermore, overexpression of NOTCH1 rescued the proliferation, migration, and invasion in papillary thyroid cancer cells. Taken together, our data indicated that CCAL promoted papillary thyroid cancer development and progression by activation of the NOTCH1 pathway, which provided a new insight on the design of therapeutic targets.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bin Zhou ◽  
Yugang Ge ◽  
Qing Shao ◽  
Liyi Yang ◽  
Xin Chen ◽  
...  

AbstractAccumulating evidence has suggested that long noncoding RNAs (lncRNAs) exert crucial modulation roles in the biological behaviors of multiple malignancies. Nonetheless, the specific function of lncRNA LINC00284 in papillary thyroid cancer (PTC) remains not fully understood. The objective of this research was to explore the influence of LINC00284 in PTC and elucidate its potential mechanism. The Cancer Genome Atlas (TCGA), gene expression omnibus (GEO) datasets were used to analyze LINC00284 expression differences in thyroid cancer and normal samples, followed by the verification of qRT-PCR in our own PTC and adjacent non-tumor tissues. The impacts of LINC00284 on PTC cell growth were detected in vitro via CCK-8, colony formation, EdU assays, and in vivo via a xenograft tumor model. Bioinformatics analyses and biological experiments were conducted to illuminate the molecular mechanism. We found that LINC00284 expression was remarkably increased in PTC tissues and its overexpression was closely correlated with larger tumor size. In addition, silencing LINC00284 could effectively attenuate PTC cell proliferation, induce apoptosis and G1 arrest in vitro, as well as suppress tumorigenesis in mouse xenografts. Mechanistic investigations showed that LINC00284 acted as a competing endogenous RNA (ceRNA) for miR-3127-5p, thus resulting in the disinhibition of its endogenous target E2F7. In short, our findings indicated that LINC00284–miR-3127-5p–E2F7 axis exerted oncogenic properties in PTC and may offer a new promising target for the diagnosis and therapy of PTC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Luyao Wu ◽  
Yu Ding ◽  
Houchao Tong ◽  
Xi Zhuang ◽  
Jingsheng Cai ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in various cancers. However, the functional roles of most lncRNA in papillary thyroid cancer (PTC) are not detailly understood. This study aims to investigate the biological function and molecular mechanism of lncRNA Fer-1 like family member 4 (FER1L4) in PTC. Methods The expression of FER1L4 in PTC was determined via operating quantitative real-time PCR assays. Meanwhile, the clinical significance of FER1L4 in patients with PTC was described. The biological functions of FER1L4 on PTC cells were evaluated by gain and loss of function experiments. Moreover, animal experiments were performed to reveal the effect on tumor growth. Subcellular distribution of FER1L4 was determined by fluorescence in situ hybridization and subcellular localization assays. Luciferase reporter assay and RNA immunoprecipitation assay were applied to define the relationship between FER1L4, miR-612, and Cadherin 4 (CDH4). Results Upregulated expression of FER1L4 in PTC tissues was positively correlated with lymph node metastasis (P = 0.020), extrathyroidal extension (P = 0.013) and advanced TNM stages (P = 0.013). In addition, knockdown of FER1L4 suppressed PTC cell proliferation, migration, and invasion, whereas ectopic expression of FER1L4 inversely promoted these processes. Mechanistically, FER1L4 could competitively bind with miR-612 to prevent the degradation of its target gene CDH4. This condition was further confirmed in the rescue assays. Conclusions This study first demonstrates FER1L4 plays an oncogenic role in PTC via a FER1L4-miR-612-CDH4 axis and may provide new therapeutic and diagnostic targets for PTC.


2017 ◽  
Vol 58 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Chen-Tian Shen ◽  
Wei-Jun Wei ◽  
Zhong-Ling Qiu ◽  
Hong-Jun Song ◽  
Xin-Yun Zhang ◽  
...  

More aggressive thyroid cancer cells show a higher activity of glycometabolism. Targeting cancer cell metabolism has emerged as a novel approach to prevent or treat malignant tumors. Glucose metabolism regulation effect of metformin in papillary thyroid cancer was investigated in the current study. Human papillary thyroid carcinoma (PTC) cell lines BCPAP and KTC1 were used. Cell viability was detected by CCK8 assay. Glucose uptake and relative gene expression were measured in metformin (0–10 mM for 48 h)-treated cells by 18F-FDG uptake assay and western blotting analysis, respectively. MicroPET/CT imaging was performed to detect 18F-FDG uptake in vivo. After treatment with metformin at 0, 2.5, 5 and 10 mM for 48 h, the ratio of p-AMPK to total AMPK showed significant rising in a dose-dependent manner in both BCPAP and KTC1, whereas p-AKT and p-mTOR expression level were downregulated. 18F-FDG uptake reduced after metformin treatment in a dose-dependent manner, corresponding to the reduced expression level of HK2 and GLUT1 in vitro. Xenograft model of PTC using BCPAP cells was achieved successfully. MicroPET/CT imaging showed that in vivo 18F-FDG uptake decreased after treatment with metformin. Immunohistochemistry staining further confirmed the reduction of HK2 and GLUT1 expression in the tumor tissue of metformin-treated PTC xenograft model. In conclusion, metformin could reduce glucose metabolism of PTC in vitro and in vivo. Metformin, by targeting glycometabolism of cancer cells, could be a promising adjuvant therapy alternative in the treatment modality of advanced thyroid carcinoma.


2019 ◽  
Vol 52 (1) ◽  
Author(s):  
Guangjun Li ◽  
Qingli Kong

Abstract Background Papillary thyroid cancer (PTC) is the most common malignancy of all thyroid cancers. LncRNA LINC00460 has been proved to play roles in the oncogenesis and progression of various tumors, including papillary thyroid cancer. However, the potential molecular mechanism of LINC00460 in PTC is poorly investigated. Results LINC00460 was upregulated in PTC tissues and cells. Raf1 was upregulated in PTC tissues, but miR-485-5p was down-regulated. High LINC00460 expression was associated with poor prognosis. LINC00460 knockdown suppressed proliferation, migration, invation and EMT of PTC cells. Bioinformatics prediction revealed that LINC00460 had binding sites with miR-485-5p, which was validated by luciferase reporter assay. In addition, miR-485-5p was confirmed to directly target Raf1 3′-UTR. Moreover, LINC00460 promoted PTC progression by sponging miR-485-5p to elevate the expression of Raf1. Knockdown of LINC00460 restrained tumor growth in vivo. Conclusion LINC00460 induced proliferation, migration, invation and EMT of PTC cells by regulating the LINC00460/miR-485-5p/Raf1 axis, which indicated that LINC00460 may be a potential biomarker and therapeutic target for PTC.


Sign in / Sign up

Export Citation Format

Share Document