scholarly journals Effect of Nano-CaCO3 on the Mechanical Properties and Durability of Concrete Incorporating Fly Ash

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yanqun Sun ◽  
Peng Zhang ◽  
Weina Guo ◽  
Jiuwen Bao ◽  
Chengping Qu

Concrete mixtures consisting of nanomaterials and fly ash have been shown to be effective for improving the performance of concrete. This study investigates the combined effects of nano-CaCO3 and fly ash on the mechanical properties and durability of concrete; the mix proportion is optimized through orthogonal experiments. In the first phase, nine concrete mixtures were prepared with three water-to-binder ratios (0.4, 0.5, and 0.6), three fly ash contents (15%, 20%, and 25% replacement of the cement weight), and three nano-CaCO3 contents (1%, 2%, and 3% replacement of the cement weight). Based on the orthogonal analysis, the optimal concrete mix proportion was determined as a water-to-binder ratio of 0.4, 20% fly ash, and 1% nano-CaCO3. In the second phase, further investigations were carried out to examine the superiority of the optimal concrete and evaluate the synergistic effect of nano-CaCO3 and fly ash. The results showed that nano-CaCO3 contributed to increasing the compressive strength of fly ash concrete at the early ages, but its effect was quite limited at later ages. Furthermore, the scanning electron microscopy analysis revealed that the seeding effect, filling effect, and pozzolanic effect were the primary mechanisms for the improvement of concrete performance.

2011 ◽  
Vol 250-253 ◽  
pp. 1293-1296 ◽  
Author(s):  
Hong Bum Cho ◽  
Nam Yong Jee

This paper offers the model that can estimate the cementing efficiency of fly ash (k value) based on a mix proportion of concrete containing fly ash (FA). The prediction model was derived using various statistical analyses, based on a wide range of mix proportions and a number of strength test results of ready mixed concretes used in eight construction sites. The k value increases with increasing water-binder ratio. As the FA replacement ratios increase, the k value increases at FA replacement ratios of less than 15%, but decreases at ratios of 15% or more. The k values obtained from the cementing efficiency estimate model range from 0.1 to 2.1.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hong-xia Zhai ◽  
Yu-zhao Tang ◽  
Shu-hang Chen ◽  
Hui-hua Chen ◽  
Bao-quan Cheng ◽  
...  

This paper focused on the optimization of the C40 fly ash concrete pavement, which was considered as a measure to accelerate the consumption of industrial solid wastes such as fly ash, committing to the goal of zero waste. By comparing with three groups of ordinary mix proportion, the performances (e.g., mechanical properties, durability, and brittle property) of the optimized mix proportion were evaluated via multiple mechanical and physical tests. Their air voids’ structure was characterized by the BJH method (a method to calculate pore size described by Barrett, Joyner, and Halenda), and the results were combined with the road performances of concrete to analyze the formation mechanism of high durability of optimized fly ash pavement concrete. As for the experimental results for the optimized, its 28 d compressive strength peaked at 50.8 MPa together with corresponding 28 d flexural strength at 8.2 MPa, which indicated a favorable mechanical performance for wide application in pavement construction. Except for the mechanical properties, the better durability indicators obtained after optimization also provided a more compact pore structure for the optimized. The raw materials and construction technology of the two kinds of pavements were compared. Promoting the use of optimized fly ash pavement concrete can break the situation of the asphalt pavement monopolizing heavy-haul highway and greatly reduce the industrial wastes which can be used as raw materials in the production of cement, such as blast furnace slag and fly ash. It was proved that the optimized fly ash concrete pavement can be used to replace the asphalt pavement under the premise of achieving the same working performances.


2012 ◽  
Vol 490-495 ◽  
pp. 2110-2114
Author(s):  
Qing Wei Sun ◽  
Han Zhu

According to problems with the paste to aggregate ratio increases significantly and lack of recognition to cementitious materials effect of fly ash in current design method of fly ash concrete mix proportion, the paper introduces a new design method of fly ash concrete mix proportion that completely bases on the stable paste to aggregate ratio. The thoughts of parts of cement replaced by equal fly ash or by excessive fly ash in traditional method are not used in this method that starting from the stable paste to aggregate ratio directly, and using the connections of water-binder ratio and concrete strength to deduce the calculation formula of fly ash concrete mix proportion with method of absolute volume. The paper sums up the calculation steps of this new method, and combines with an example to verify the feasibility and effectiveness of this method.


2014 ◽  
Vol 1054 ◽  
pp. 162-167
Author(s):  
Tomáš Váchal ◽  
Rostislav Šulc ◽  
Pavel Svoboda

This paper describes influence of time and temperature of heat curing on progress of mechanical characteristics of concrete mixtures based on alkali activated fly-ash (POPbeton). One of the major impacts for the correct treatment of alkaline activation is the quantity of heat energy in a given time period which is supplied during activation. The paper describes the dependence of progress of compressive strength of POPbeton on the time and temperature of heat curing. It was assembled a predictive model which describes the dependence of the supplied heat energy over time on the resulting properties of POPbeton. The result is a tool that can predict the resulting values of mechanical characteristics of test samples of POPbeton.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hong-zhu Quan ◽  
Hideo Kasami

In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%–20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.


2016 ◽  
Vol 3 (6) ◽  
pp. 2387-2393 ◽  
Author(s):  
Kalpana Kumari ◽  
R. Preetha ◽  
D. Ramachandran ◽  
Vinita Vishwakarma ◽  
Rani. P. George ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document