scholarly journals EMI Technique for Monitoring the Damage Evolution of Initial Damaged Tunnel Invert Concrete Subjected to High Traffic Cyclic Loading

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yichao Ye ◽  
Limin Peng ◽  
Yuexiang Lin ◽  
Jianwen Liu ◽  
Mingfeng Lei ◽  
...  

The electromechanical impedance (EMI) technique based on the PZT transducer, in the past twenty years of research progress, has demonstrated its potential for cost-effective and high damage-sensitive structural health monitoring. This paper presents an application of EMI technique for damage evolution investigation of initial damaged tunnel invert concrete under high traffic cyclic loading. In the tests, six different levels of initial damage inside the specimens, as the influencing factor, were firstly created by applying a certain number of impacts with a free-falling iron ball. Then, these specimens were applied typical mechanical boundaries similar to that of tunnel invert concrete by an installation specially designed. Finally, the traffic cyclic loading carefully determined was exerted by the MTS815 hydraulic zero-control testing system, to investigate the evolution characteristic of piezoelectric signature of the PZT sensor. The experimental result shows that the conductance signature follows a consistent rightward shifting with the number of cycles increasing, and the larger the initial damage of the specimen, the more obvious the rightward shifting. It indicates that, in general, the traffic cyclic loading is not large enough to make the microcracks propagate to fatigue failure in tunnel invert concrete even if there is a large initial damage. On the contrary, with special mechanical boundaries, the local nominal stiffness of tunnel invert concrete will gradually increase. This phenomenon may be interpreted as an effect of generalized damage recovery. A new damage index, with values between 0 and 1, was then defined to quantify the damage level for quantitative analysis. It was found that the damage recovery behaviors for different initial damaged specimens can be well and uniformly described by an empirical expression, which may be helpful for the damage assessment of tunnel invert concrete under high traffic cyclic loading in the future.

2021 ◽  

Ultralow cycle fatigue (ULCF) failure was first observed on steel bridge piers in the Kobe earthquake, and the ultimate strength and ductility evaluation formulas of thin-walled steel bridge piers were established. In this study, parametric analysis of steel piers was carried out to study the influence of the structural parameters on the ULCF damage evolution. The evolution of the ULCF damage of the base metal, the deposited metal, and the heat-affected zones was studied based on two types of steel piers with hollow box and pipe sections. Then, practical formulas to predict the ULCF damage level of steel piers under cyclic loading were proposed. Finally, the proposed formulas were validated by comparisons with the experimental results. The results show that the heat-affected zone is more vulnerable to ULCF failure than the base metal and the deposited metal. Moreover, the practical formulas to predict the ULCF damage index of the steel piers under cyclic loading were proposed, and the formulas effectively predicted the ULCF crack of the steel piers.


2021 ◽  
Vol 13 (2) ◽  
pp. 50
Author(s):  
Hamed Z. Jahromi ◽  
Declan Delaney ◽  
Andrew Hines

Content is a key influencing factor in Web Quality of Experience (QoE) estimation. A web user’s satisfaction can be influenced by how long it takes to render and visualize the visible parts of the web page in the browser. This is referred to as the Above-the-fold (ATF) time. SpeedIndex (SI) has been widely used to estimate perceived web page loading speed of ATF content and a proxy metric for Web QoE estimation. Web application developers have been actively introducing innovative interactive features, such as animated and multimedia content, aiming to capture the users’ attention and improve the functionality and utility of the web applications. However, the literature shows that, for the websites with animated content, the estimated ATF time using the state-of-the-art metrics may not accurately match completed ATF time as perceived by users. This study introduces a new metric, Plausibly Complete Time (PCT), that estimates ATF time for a user’s perception of websites with and without animations. PCT can be integrated with SI and web QoE models. The accuracy of the proposed metric is evaluated based on two publicly available datasets. The proposed metric holds a high positive Spearman’s correlation (rs=0.89) with the Perceived ATF reported by the users for websites with and without animated content. This study demonstrates that using PCT as a KPI in QoE estimation models can improve the robustness of QoE estimation in comparison to using the state-of-the-art ATF time metric. Furthermore, experimental result showed that the estimation of SI using PCT improves the robustness of SI for websites with animated content. The PCT estimation allows web application designers to identify where poor design has significantly increased ATF time and refactor their implementation before it impacts end-user experience.


2020 ◽  
Vol 29 (7) ◽  
pp. 1117-1137 ◽  
Author(s):  
Wenlin Feng ◽  
Chunsheng Qiao ◽  
Shuangjian Niu ◽  
Zhao Yang ◽  
Tan Wang

The experimental results show that the creep properties of the rocks are affected by the initial damage, and the damage evolution also has a significant impact on the time-dependent properties of the rocks during the creep. However, the effects of the initial damage and the damage evolution are seldom considered in the current study of the rocks' creep models. In this paper, a new nonlinear creep damage model is proposed based on the multistage creep test results of the sandstones with different damage degrees. The new nonlinear creep damage model is improved based on the Nishihara model. The influences of the initial damage and the damage evolution on the components in the Nishihara model are considered. The creep damage model can not only describe the changes in three creep stages, namely, the primary creep, the secondary creep, and the tertiary creep, but also reflect the influence of the initial damage and the damage evolution on creep failure. The nonlinear least squares method is used to determine the parameters in the nonlinear creep damage model. The consistency between the experimental data and the predicted results indicates the applicability of the nonlinear damage model to accurately predict the creep deformation of the rocks with initial damage.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 409
Author(s):  
Xiaofei Tang ◽  
Rui Zhu ◽  
Tianjing Shi ◽  
Yu Wang ◽  
Xiaochen Niu ◽  
...  

High energy density materials (HEDM) are the subject of an extensive research effort in relation to the use of these compounds as components of rocket propellants, powders, and formulations of high-performance explosives. Hexanitrohexaazaisowurtzitane (HNIW, i.e., CL-20) has received much attention in these research fields for its specific impulse, burning rate, ballistics, and detonation velocity. In this paper, the development and performances of the explosives from the first to the fourth generation are briefly summarized, and the synthesis status of the fourth-generation explosive, HNIW, is reviewed. The key issues that restrict the development of industrial amplification synthesis of HNIW are analyzed, and the potential directions of development are proposed. It is pointed out that to synthesize new and efficient catalysts is the key to making the cost-effective manufacturing of CL-20 a reality.


CivilEng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 969-985
Author(s):  
Demiana Tse ◽  
João M. Pereira ◽  
Paulo B. Lourenço

Historic monuments and construction capture the knowledge of civilizations of the past and are a source of pride for people of the present. Over the centuries, these buildings have been at risk from natural and man-made causes. The Alhambra, a UNESCO World Heritage Site in Granada, Spain, is one of such places. This paper aims to evaluate the structural performance of the Torre de la Vela, a tower in the Alhambra, under blast loads. The loads were based on historical records of barrels of gunpowder and were modeled as simplified pressure profiles using existing empirical equations. The effect of impulsive loading on the material properties was accounted for using dynamic increase factors, determined experimentally by previous authors. The model was created using finite element methods (FEM) and the problem was solved using explicit dynamic analysis available in Abaqus/Explicit. Using the failure volume damage index, a blast load applied outside and inside of the building would create a low damage level, which should be treated with caution given the occurrence of localized damage. The removal of elements exceeding a given damage threshold led to more visible damage patterns than the Concrete Tension Damage option in Abaqus.


2020 ◽  
Vol 50 (7) ◽  
pp. 876-896
Author(s):  
Feng LIAO ◽  
Tao ZHENG ◽  
JinZhao HUANG ◽  
LiCheng GUO ◽  
JiuZhou ZHAO ◽  
...  

2007 ◽  
Author(s):  
P. Lestriez ◽  
F. Bogard ◽  
J. L. Shan ◽  
Y. Q. Guo

Sign in / Sign up

Export Citation Format

Share Document