scholarly journals Approximate Controllability for a Kind of Fractional Neutral Differential Equations with Damping

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jun Du ◽  
Dongling Cui ◽  
Yeguo Sun ◽  
Jin Xu

This paper gains several meaningful results on the mild solutions and approximate controllability for a kind of fractional neutral differential equations with damping (FNDED) and order belonging to 1,2 in Banach spaces. At first, a new expression for the mild solutions of FNDED via the (p, q)-regularized operator family and the technique of Laplace transform is acquired. Then, we consider the approximate controllability of FNDED by means of the approximate sequence method, and simultaneously, some applicable sufficient conditions are obtained.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Badawi Hamza Elbadawi Ibrahim ◽  
Zhenbin Fan ◽  
Gang Li

We discuss the functional control systems governed by differential equations with Riemann-Liouville fractional derivative in general Banach spaces in the present paper. First we derive the uniqueness and existence of mild solutions for functional differential equations by the approach of fixed point and fractional resolvent under more general settings. Then we present new sufficient conditions for approximate controllability of functional control system by means of the iterative and approximate method. Our results unify and generalize some previous works on this topic.


2006 ◽  
Vol 47 (4) ◽  
pp. 555-568 ◽  
Author(s):  
Faming Guo ◽  
Bin Tang ◽  
Falun Huang

AbstractThis paper is concerned with robustness with respect to small delays for the exponential stability of abstract differential equations in Banach spaces. Some necessary and sufficient conditions are given in terms of the uniformly square integrability of the fundamental operator family and the uniform boundedness of its resolvent on the imaginary axis.


Filomat ◽  
2019 ◽  
Vol 33 (18) ◽  
pp. 5887-5912 ◽  
Author(s):  
Mahalingam Nagaraj ◽  
Velusamy Kavitha ◽  
Dumitru Baleanu ◽  
Mani Arjunan

This manuscript is involved with a class of second-order impulsive partial functional integro-differential evolution equations with nonlocal conditions in Banach spaces. Sufficient conditions ensuring the existence and approximate controllability of mild solutions are established. Theory of cosine family, Banach contraction principle and Leray-Schauder nonlinear alternative fixed point theorem are employed for achieving the required results. An example is analyzed to illustrate the effectiveness of the outcome.


Author(s):  
Shengli Xie

AbstractIn this paper we prove the existence and uniqueness of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay in Banach spaces. We generalize the existence theorem for integer order differential equations to the fractional order case. The results obtained here improve and generalize many known results.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 318
Author(s):  
Osama Moaaz ◽  
Amany Nabih ◽  
Hammad Alotaibi ◽  
Y. S. Hamed

In this paper, we establish new sufficient conditions for the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral term, which are under the non-canonical condition. The results obtained complement and simplify some known results in the relevant literature. Example illustrating the results is included.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1095
Author(s):  
Clemente Cesarano ◽  
Osama Moaaz ◽  
Belgees Qaraad ◽  
Nawal A. Alshehri ◽  
Sayed K. Elagan ◽  
...  

Differential equations with delay arguments are one of the branches of functional differential equations which take into account the system’s past, allowing for more accurate and efficient future prediction. The symmetry of the equations in terms of positive and negative solutions plays a fundamental and important role in the study of oscillation. In this paper, we study the oscillatory behavior of a class of odd-order neutral delay differential equations. We establish new sufficient conditions for all solutions of such equations to be oscillatory. The obtained results improve, simplify and complement many existing results.


Author(s):  
Xia Zhou ◽  
Dongpeng Zhou ◽  
Shouming Zhong

Abstract This paper consider the existence, uniqueness and exponential stability in the pth moment of mild solution for impulsive neutral stochastic integro-differential equations driven simultaneously by fractional Brownian motion and by standard Brownian motion. Based on semigroup theory, the sufficient conditions to ensure the existence and uniqueness of mild solutions are obtained in terms of fractional power of operators and Banach fixed point theorem. Moreover, the pth moment exponential stability conditions of the equation are obtained by means of an impulsive integral inequality. Finally, an example is presented to illustrate the effectiveness of the obtained results.


1992 ◽  
Vol 15 (3) ◽  
pp. 509-515 ◽  
Author(s):  
B. S. Lalli ◽  
B. G. Zhang

An existence criterion for nonoscillatory solution for an odd order neutral differential equation is provided. Some sufficient conditions are also given for the oscillation of solutions of somenth order equations with nonlinearity in the neutral term.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.


2018 ◽  
Vol 68 (6) ◽  
pp. 1385-1396 ◽  
Author(s):  
Arun Kumar Tripathy ◽  
Rashmi Rekha Mohanta

Abstract In this paper, several sufficient conditions for oscillation of all solutions of fourth order functional differential equations of neutral type of the form $$\begin{array}{} \displaystyle \bigl(r(t)(y(t)+p(t)y(t-\tau))''\bigr)''+q(t)G\bigl(y(t-\sigma)\bigr)=0 \end{array}$$ are studied under the assumption $$\begin{array}{} \displaystyle \int\limits^{\infty}_{0}\frac{t}{r(t)}{\rm d} t =\infty \end{array}$$


Sign in / Sign up

Export Citation Format

Share Document