scholarly journals Multiobjective Optimization on Hierarchical Refugee Evacuation and Resource Allocation for Disaster Management

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jian Wang ◽  
Danqing Shen ◽  
Mingzhu Yu

This paper studies a location-allocation problem to determine the selection of emergency shelters, medical centers, and distribution centers after the disaster. The evacuation of refugees and allocation of relief resources are also considered. A mixed-integer nonlinear multiobjective programming model is proposed to characterize the problem. The hierarchical demand of different refugees and the limitations of relief resources are considered in the model. We employ a combination of the simulated annealing (SA) algorithm and the particle swarm optimization (PSO) algorithm method to solve the complex model. To optimize the result of our proposed algorithm, we absorb the group search, crossover, and mutation operator of GA into SA. We conduct a case study in a district of Beijing in China to validate the proposed methodology. Some computational experiments are conducted to analyze the impact of different factors, such as the target weight setting, selection of candidate shelters, and quantity of relief resources.

2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


2020 ◽  
Vol 12 (3) ◽  
pp. 1131
Author(s):  
Wenliang Zhou ◽  
Xiaorong You ◽  
Wenzhuang Fan

To avoid conflicts among trains at stations and provide passengers with a periodic train timetable to improve service level, this paper mainly focuses on the problem of multi-periodic train timetabling and routing by optimizing the routes of trains at stations and their entering time and leaving time on each chosen arrival–departure track at each visited station. Based on the constructed directed graph, including unidirectional and bidirectional tracks at stations and in sections, a mixed integer linear programming model with the goal of minimizing the total travel time of trains is formulated. Then, a strategy is introduced to reduce the number of constraints for improving the solved efficiency of the model. Finally, the performance, stability and practicability of the proposed method, as well as the impact of some main factors on the model are analyzed by numerous instances on both a constructed railway network and Guang-Zhu inter-city railway; they are solved using the commercial solver WebSphere ILOG CPLEX (International Business Machines Corporation, New York, NY, USA). Experimental results show that integrating multi-periodic train timetabling and routing can be conducive to improving the quality of a train timetable. Hence, good economic and social benefits for high-speed rail can be achieved, thus, further contributing to the sustained development of both high-speed railway systems and society.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012096
Author(s):  
Christoph Waibel ◽  
Shanshan Hsieh ◽  
Arno Schlüter

Abstract This paper demonstrates the impact of demand response (DR) on optimal multi-energy systems (MES) design with building integrated photovoltaics (BIPV) on roofs and façades. Building loads and solar potentials are assessed using bottom-up models; the MES design is determined using a Mixed-Integer Linear Programming model (energy hub). A mixed-use district of 170,000 m2 floor area including office, residential, retail, education, etc. is studied under current and future climate conditions in Switzerland and Singapore. Our findings are consistent with previous studies, which indicate that DR generally leads to smaller system capacities due to peak shaving. We further show that in both the Swiss and Singapore context, cost and emissions of the MES can be reduced significantly with DR. Applying DR, the optimal area for BIPV placement increases only marginally for Singapore (~1%), whereas for Switzerland, the area is even reduced by 2-8%, depending on the carbon target. In conclusion, depending on the context, DR can have a noticeable impact on optimal MES and BIPV capacities and should thus be considered in the design of future, energy efficient districts.


2017 ◽  
Vol 26 (44) ◽  
pp. 21 ◽  
Author(s):  
John Willmer Escobar

This paper contemplates the supply chain design problem of a large-scale company by considering the maximization of the Net Present Value. In particular, the variability of the demand for each type of product at each customer zone has been estimated. As starting point, this paper considers an established supply chain for which the main problem is to determine the decisions regarding expansion of distribution centers. The problem is solved by using a mixed-integer linear programming model, which optimizes the different demand scenarios. The proposed methodology uses a scheme of optimization based on the generation of multiple demand scenarios of the supply network. The model is based on a real case taken from a multinational food company, which supplies to the Colombian and some international markets. The obtained results were compared with the equivalent present costs minimization scheme of the supply network, and showed the importance and efficiency of the proposed approach as an alternative for the supply chain design with stochastic parameters.


Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 266
Author(s):  
Sohye Baek ◽  
Young Hoon Lee ◽  
Seong Hyeon Park

Ambulance diversion (AD) is a common method for reducing crowdedness of emergency departments by diverting ambulance-transported patients to a neighboring hospital. In a multi-hospital system, the AD of one hospital increases the neighboring hospital’s congestion. This should be carefully considered for minimizing patients’ tardiness in the entire multi-hospital system. Therefore, this paper proposes a centralized AD policy based on a rolling-horizon optimization framework. It is an iterative methodology for coping with uncertainty, which first solves the centralized optimization model formulated as a mixed-integer linear programming model at each discretized time, and then moves forward for the time interval reflecting the realized uncertainty. Furthermore, the decentralized optimization, decentralized priority, and No-AD models are presented for practical application, which can also show the impact of using the following three factors: centralization, mathematical model, and AD strategy. The numerical experiments conducted based on the historical data of Seoul, South Korea, for 2017, show that the centralized AD policy outperforms the other three policies by 30%, 37%, and 44%, respectively, and that all three factors contribute to reducing patients’ tardiness. The proposed policy yields an efficient centralized AD management strategy, which can improve the local healthcare system with active coordination between hospitals.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Cheng Luo ◽  
Hongying Fei ◽  
Dana Sailike ◽  
Tingyi Xu ◽  
Fuzhi Huang

“Double-Line Ship Mooring” (DLSM) mode has been applied as an initiative operation mode for solving berth allocation problems (BAP) in certain giant container terminals in China. In this study, a continuous berth scheduling problem with the DLSM model is illustrated and solved with exact and heuristic methods with an objective to minimize the total operation cost, including both the additional transportation cost for vessels not located at their minimum-cost berthing position and the penalties for vessels not being able to leave as planned. First of all, this problem is formulated as a mixed-integer programming model and solved by the CPLEX solver for small-size instances. Afterwards, a particle swarm optimization (PSO) algorithm is developed to obtain good quality solutions within reasonable execution time for large-scale problems. Experimental results show that DLSM mode can not only greatly reduce the total operation cost but also significantly improve the efficiency of berth scheduling in comparison with the widely used single-line ship mooring (SLSM) mode. The comparison made between the results obtained by the proposed PSO algorithm and that obtained by the CPLEX solver for both small-size and large-scale instances are also quite encouraging. To sum up, this study can not only validate the effectiveness of DLSM mode for heavy-loaded ports but also provide a powerful decision support tool for the port operators to make good quality berth schedules with the DLSM mode.


1985 ◽  
Vol 17 (2) ◽  
pp. 163-170 ◽  
Author(s):  
L. Upton Hatch ◽  
William E. Hardy ◽  
Eugene W. Rochester ◽  
Gregory C. Johnson

AbstractAlthough annual rainfall in the Southeast is adequate, its distribution is a potential constraint to agricultural production. Farmers require production information concerning efficient use of irrigation technology adapted to regional growing conditions. Selection of optimal position, size, and number of pivots in center pivot irrigation systems poses special problems on small, irregularly shaped fields. In the southeastern United States, field size and shape are often varied and irregular. A mixed integer programming model was constructed to assist in irrigation investment decisions. The model is illustrated using irrigated peanut production in southeast Alabama. Results indicate the importance of economic engineering considerations.


Author(s):  
Hsin-Wei Hsu

The green supply chain management has drawn researchers’ attention in recent years, but most of the proposed models for green topics on the subject are case based, and for this reason, they lack generality. In this work, the design of a supply chain network is studied. In this chapter, we try to overcome this limitation and a generalized model is proposed, in which a logistics chain network problem is formulated into a 0-1 mixed integer linear programming model and the decisions for the function of manufactures, distribution centers, and dismantlers will be suggested with minimum cost. A numerical example is provided for illustration.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Igor Litvinchev ◽  
Fernando Lopez-Irarragorri ◽  
Nancy Maribel Arratia-Martínez ◽  
José Antonio Marmolejo

We address the portfolio selection of social projects in public organizations considering interdependencies (synergies) affecting project funds requirements and tasks. A mixed integer linear programming model is proposed incorporating the most relevant aspects of the problem found in the literature. The model supports both complete (all or nothing) and partial (a certain amount from a given interval of funding) resource allocation policies. Numerical results for large-scale problem instances are presented.


Sign in / Sign up

Export Citation Format

Share Document