scholarly journals Actuator Fault-Tolerant Control Applied to Three-Tank System

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mondher Amor ◽  
Taoufik Ladhari ◽  
Salim Hadj Said ◽  
Faouzi M’Sahli

This paper focuses on the application of an active fault-tolerant control (AFTC) to a real nonlinear system using analytic redundancy in case of actuator faults. This approach is composed of the fault detection, isolation, and estimation (FDIE) module and a control compensation module. A high-gain observer (HGO) is used for FDIE; a new control law is then reconstructed by the addition of the estimated actuator fault magnitude to the nominal control law. Experimental results highlight the performance of the proposed approach when it is applied to the hydrographic plant.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mondher Amor ◽  
Taoufik Ladhari ◽  
Salim Hadj Said ◽  
Faouzi M’Sahli

This research paper would be devoted to the application of a fault-tolerant control (FTC) for a benchmark system composed of three interconnected tanks in case of sensor faults. The control scheme includes two blocks: fault detection and isolation (FDI) block and a control law reconfiguration block. The strategy of the FDI method is based on a bank of high gain observers; each of them is constructed to estimate the system state vector. Thus, the diagnostic signal-residuals are generated by the comparison of measured and estimated outputs and the faulty sensor is isolated. The reconfiguration block performs an update of the controller parameters according to the operating mode. The application of this method to a pilot plant demonstrates that the hydrographic system maintains quite performances after sensor faults occurrence.


Author(s):  
Zhifeng Gao ◽  
Peng Cheng ◽  
Moshu Qian ◽  
Guoping Jiang ◽  
Jinxing Lin

In this study, the active fault-tolerant control problem is investigated for a rigid spacecraft in the presence of inertia uncertainty, external disturbance, multiple actuator faults and actuator saturation. The attitude system model of spacecraft and actuator fault model are first given. A sliding mode–based fault detection observer and a radial basis function neural networks–based fault estimation observer are designed to detect the time of actuator fault occurred and estimate the amplitude of unknown fault, respectively. On that basis, an active fault-tolerant control scheme is proposed to accommodate the effects of multiple actuator faults, and it guarantees that the state trajectory of attitude systems without actuator saturation converges to a neighborhood of the origin in finite time. Another active fault-tolerant control scheme is further proposed in actuator saturation constraint case; it ensures that all the closed-loop signals are finite time convergence. Finally, simulation results are given to illustrate the effectiveness of the proposed fault-tolerant control approach.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yan-Hua Ma ◽  
Xian Du ◽  
Lin-Feng Gou ◽  
Si-Xin Wen

AbstractIn this paper, an active fault-tolerant control (FTC) scheme for turbofan engines subject to simultaneous multiplicative and additive actuator faults under disturbances is proposed. First, a state error feedback controller is designed based on interval observer as the nominal controller in order to achieve the model reference rotary speed tracking control for the fault-free turbofan engine under disturbances. Subsequently, a virtual actuator based reconfiguration block is developed aiming at preserving the consistent performance in spite of the occurrence of the simultaneous multiplicative and additive actuator faults. Moreover, to improve the performance of the FTC system, the interval observer is slightly modified without reconstruction of the state error feedback controller. And a theoretical sufficiency criterion is provided to ensure the stability of the proposed active FTC system. Simulation results on a turbofan engine indicate that the proposed active FCT scheme is effective despite of the existence of actuator faults and disturbances.


2017 ◽  
Vol 40 (10) ◽  
pp. 2991-2998
Author(s):  
Quanchao Dong ◽  
Hongyan Yang

This paper presents a finite frequency-based active fault tolerant control approach for the compensation of unknown failures in linear time-delay plants. An integration of fault detection filter based on observer technology and [Formula: see text] controller in residual feedback form is considered in the active fault tolerant control system. Different from the traditional schemes, exact fault estimation is not necessary in the proposed active fault tolerant control. To achieve the desired system performance when a fault occurs, the residual is directly embedded in the control loop as a feedback term to compensate the influence of fault. By employing the Generalized Kalman–Yakubovich–Popov lemma, we derive the sufficient conditions of the existence of such an active fault tolerant control plant, and iterative algorithms are applied to obtain the solutions to the fault detection filter and controller parameter matrices. Finally, simulation results are proposed to demonstrate the effectiveness of the developed scheme.


2014 ◽  
Vol 635-637 ◽  
pp. 1199-1202 ◽  
Author(s):  
Zheng Gao Hu ◽  
Guo Rong Zhao ◽  
Da Wang Zhou

For the chattering problem in the traditional sliding mode observer-based fault estimation, a second order sliding mode observer based on the Super-twisting algorithm was proposed. In order to avoid the cumbersome process of proving the stability of the Super-twisting algorithm, a Lyapunov function was adopted. An active fault tolerant control law was designed based on the fault estimation. Finally, simulation show the effectiveness of the proposed approach.


2019 ◽  
Vol 9 (19) ◽  
pp. 4010 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

Fault-tolerant control is becoming an interesting topic because of its reliability and safety. This paper reports an active fault-tolerant control method for a quadcopter unmanned aerial vehicle (UAV) to handle actuator faults, disturbances, and input constraints. A robust fault diagnosis based on the H ∞ scheme was designed to estimate the magnitude of a time-varying fault in the presence of disturbances with unknown upper bounds. Once the fault estimation was complete, a fault-tolerant control scheme was proposed for the attitude system, using adaptive sliding mode backstepping control to accommodate the actuator faults, despite actuator saturation limitation and disturbances. The Lyapunov theory was applied to prove the robustness and stability of the closed-loop system under faulty operation. Simulation results show the effectiveness of the fault diagnosis scheme and proposed controller for handling actuator faults.


Sign in / Sign up

Export Citation Format

Share Document