scholarly journals Experimental Study on Bending Moment of Double-Row Steel Pipe Piles in Foundation Excavation

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ming-yi Zhang ◽  
Jia-xiao Ma ◽  
Shu-juan Yang ◽  
Yong-hong Wang ◽  
Xiao-yu Bai ◽  
...  

Double-row steel pipe piles have been widely used in retaining and protection of foundation excavation because of the advantages of high bearing capacity, high flexural rigidity, fast construction speed, and so on. This study presents a field test to assess the feasibility of strain gauges in monitoring the strain of double-row steel pipe piles during foundation excavation. Two steel pipe piles were instrumented with strain gauges and then installed into the drilling holes. The installation method of strain gauges is introduced first. Then, the bending moment of the test piles during the foundation excavation was analyzed. The field test results indicate that the survival rate of strain gauges was 100%, and the monitoring method used in the test was feasible to measure the bending moment of double-row steel pipe piles. Moreover, with the increase in foundation excavation depth, the bending moment of the test piles all increased, and the bending moment of the inner pile was obviously higher than that of the outer pile. The bending moment distribution of the whole support system accords with the conventional pile-anchor mode. The test results can provide reference and basis for the design and construction of double-row steel pipe piles.

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhijun Yang ◽  
Qing Fang ◽  
Bu Lv ◽  
Can Mei ◽  
Xudong Fu

The cracks are likely to initiate on a lateral loaded pile and would cause greater deflection at the pile head. However, there is a lack of thorough investigation into the effect of cracking on the response of the lateral loaded pile. In this article, a full-scale field test was carried out to investigate the behavior of Drilled and Postgrouted Concrete Pipe Pile under lateral loads. A novel analysis method for the lateral loaded pile, which can take the cracking effects into consideration, was proposed, and the validity was verified by the test results. With the proposed method, the cracking effects on flexural rigidity, displacement, rotation, and bending moment of the pile were studied. In brief, cracking effect would dramatically reduce the flexural rigidity of the pile, remarkable increase the displacement and rotation of the pile top, and slightly decrease bending moment of the pile. Unambiguously, the results show that the proposed method can excellently predict the response of laterally loaded piles under cracking effects.


2013 ◽  
Vol 850-851 ◽  
pp. 377-380 ◽  
Author(s):  
Jie Yang ◽  
Wu Yun Zhao ◽  
Fei Dai

This machine was for membrane covering the whole of the double furrow sowing technology and designed. They were designed to meet membrane covering the whole of the double furrow sowing technology agronomic requirements of the premise, but also to meet planting can improve efficiency, stable, reliable and cost requirements. For the above requirements, the machine used double Dibble wheel structure; field test results show that the aircraft meet the design requirements and agronomic requirements.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Chengzhi Wang ◽  
Xin Liu ◽  
Pengfei Li

The findings of an experimental study that was undertaken to investigate the performance of concrete-filled steel tubular members subjected to lateral loads are reported in this study. Columns of pure concrete, concrete with reinforcing bars, and two steel tube thicknesses were considered. Two different tests were conducted in this study. One test is used to research the performance of steel tube-reinforced concrete model piles under a lateral loading. The other test is used to research the effect of the depth of rock embedment for piles embedded in a foundation to simulate actual engineering applications in an experimental study. According to these test results, a detailed analysis was carried out on the relationships, such as the stress-strain and load-displacement relationships for the specimen. These tests show that the steel tube thickness and steel bars will significantly enhance the lateral bearing capacity and rigidity of the composite components. Additionally, the ultimate bending moment formula of a steel tube-reinforced concrete pile is deduced. The comparison of the calculated results with the experimental results shows that this formula is applicable for this type of pile foundation.


1988 ◽  
Vol 23 (2) ◽  
pp. 79-86 ◽  
Author(s):  
W S Utting ◽  
N Jones

Tensile tests were performed on a straight steel strand of three layer (12/6/1) construction, having a core wire diameter of 3.66 mm and 3.33 mm diameter helical wires, under conditions of full end-fixity, partial restraint, and ends free from torsional restraint. The torque generated under tensile load was recorded as well as the strand extension and rotation over a 600 mm gauge length. Wire tensions and bending moments in the outer layer of helical wires were determined at the mid-strand position from the outputs of strain gauges in groups of three with parallel grids and mounted parallel to the wire axis on the crown of each wire. The rate of strand extension under tensile load was found to be greater in tests with reduced torsional restraint, the greatest rate occurring in the free-end test. The strand rotation rate was also found to be greatest in the free-end test. The greatest difference from the theoretically predicted rates occurred in a free-end test with increasing load; predicted values of extension and rotation underestimated the test results by 12 and 23 per cent, respectively. Displacement of the load-torque plots occurred in the direction of reducing torque as testing proceeded. This appears to indicate the redistribution of the strand load between the layers of wires. Wire tensions showed a more even sharing of load in the fixed-end condition than in the free-end condition. The increase in rate of tension with strand load was less for most wires in tests with reduced torsional restraint, with the lowest tension rates developing in the free-end condition. For most wires, the rate of bending moment change with strand load was greater (in the sense tending to decrease tensile stress on wire crowns) in tests with reduced torsional restraint. However, the bending moment rates varied greatly between wires, the variation being greater in tests with reduced torsional restraint than in fixed-end tests.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1358
Author(s):  
Xunchang Li ◽  
Rui Xu ◽  
Wei Yang ◽  
Pingan Li ◽  
Ke Yang ◽  
...  

This paper aimed to perform systematical study on the distribution of landslide thrust in pile-anchor support system, which has been a widely applicable treatment method in landslide control with safety, highly efficiency and adaptation. The advantage of photoelastic technique is visualization of strain and stress fields, therefore photoelastic model tests are conducted to show the distribution of landslide thrust in pile-anchor structure before failure in landslide. The effects of different materials and pile lengths are investigated by 6 photoelastic test cases under different loading conditions. It can be found from quantitative analysis of experimental results that load proportion of anchor would increase gradually with the decrease of pile embedded depth or the increase of landslide thrust force. Meanwhile, landslide thrust distribution in pile-anchor structure is directly affected by the stiffness of piles. The pile-anchor structure is significantly better at reducing bending moment value and optimizing bending moment distribution of pile. Finally, some theoretical analysis and design suggestions are proposed based on the experimental study.


1990 ◽  
Author(s):  
David M. Bailey ◽  
Stuart D. Foltz ◽  
Myer J. Rosenfield
Keyword(s):  

2014 ◽  
Vol 1079-1080 ◽  
pp. 258-265
Author(s):  
Chen Ning Cai ◽  
Shan He ◽  
Li Na Liu ◽  
Shi Kun Ou

Thispaper presents an experimental study to strengthen an existing bridge usingpre-stressed carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer(GFRP) materials. The method using pre-stressed hybrid fiber reinforced polymer(HFRP) to strengthened structural members is an emerging pre-stressed strengtheningtechnology. In this study, experimental data selected from result of staticloading test conducted to hollow slabs with CFRP/GFRP has been compared with specimenswithout strengthening. Test results showed that the strengthening methoddeveloped in this study could effectively reduce the stress in hollow slab,improving the flexural rigidity and inhibiting the concrete from fracture.


2021 ◽  
pp. 136943322110015
Author(s):  
Ting Guo ◽  
Na Yang ◽  
Huichun Yan ◽  
Fan Bai

This study aimed to investigate the moment carrying behavior of typical Tibetan timber beam-column joints under monotonic vertical static load and also evaluate the influence of length ratio of Gongmu to beam (LRGB) and dowels layout on the structural performance of the joint. Six full-scale specimens were fabricated with same construction but different Gongmu length and dowels position. The moment carrying performance of beam-column joints in terms of failure mode, moment resistance, and rotational stiffness of joints were obtained via monotonic loading tests. Test results indicated that all joints are characterized by compressive failure perpendicular to grain of Ludou. Additionally, it was found that greater LRGB leads to greater initial rotational stiffness and maximum moment of the joint by an increase of restraint length for beam end; however, offsetting dowels toward column resulted smaller stiffness and ultimate bending moment of joints, particularly, offsetting Beam-Gongmu dowels toward column changed the moment-rotation curve pattern of the beam-column joint, accompanied by a hardening stiffness at last phase. Furthermore, a simplified trilinear model was proposed to represent the moment-rotation relationship of the typical Tibetan timber beam-column joint.


Sign in / Sign up

Export Citation Format

Share Document