scholarly journals Microscopic Pore Structure Characteristics and Methane Adsorption of Vitrain and Durain

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Fu Yang ◽  
Dongmin Ma ◽  
Zhonghui Duan ◽  
Dazhong Ren ◽  
Tao Tian ◽  
...  

During reservoir evaluation, the microscopic pore structure of low-rank coal is mainly characterized in order to study the coalbed methane diffuse and migration mechanisms and control. The low-rank coals are very different in pore type and size, so it is necessary to use various techniques to describe their pore structure. For vitrain and durain of the Coal Member of the Yan’an Formation from Huanglong Coalfield, their chemical composition and microscopic pore structure characteristics were studied, and the factors of influencing the pore size distribution (PSD) were explored. Obviously, vitrain and durain are different in chemical composition. Vitrain has higher moisture content, volatile yield, and vitrinite group content than durain. Vitrain and durain mainly contain vitrinite and inertinite, respectively. The pore structure characteristics (e.g., pore types and PSD) of vitrain and durain were systematically by mercury intrusion porosimetry (MIP), low-temperature nitrogen adsorption, and carbon dioxide (CO2) adsorption. The vitrain and durain samples with a micropore size of <2 nm were mainly tested on their specific surface area (SSA) and pore volume (PV). The results show that microporous vitrain has larger SSA and PV than microporous durain, while mesoporous and macroporous vitrain has smaller SSA and PV than mesoporous and macroporous durain. SSA is very positively correlated with PV. The ash content is negatively correlated with SSA and PV. The ash content influences microporous vitrain more greatly than microporous durain, but mesoporous and macroporous durain more greatly than mesoporous and macroporous vitrain. SSA is positively correlated with the vitrinite content of durain and negatively correlated with the inertinite and exinite contents of durain. However, SSA is negatively correlated with the vitrinite and exinite contents of vitrain and positively correlated with the inertinite content of vitrain. Vitrain has higher methane adsorption capacity, desorption rate, and recovery ratio than durain. There are parameters that are obviously affected by the micropore characteristics.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jielin Lu ◽  
Xuehai Fu ◽  
Junqiang Kang ◽  
Ming Cheng ◽  
Zhenzhi Wang

The accurate characterization of coal pore structure is significant for coalbed methane (CBM) development. The splicing of practical pore ranges of multiple test methods can reflect pore structure characteristics. The pore\fracture compressibility is the main parameter affecting the porosity and permeability of coal reservoirs. The difference in compressibility of different coal rank reservoirs and pore\fracture structures with changing stress have not been systematically found. The pore structure characteristics of different rank coal samples were characterized using the optimal pore ranges of high-pressure mercury intrusion (HPMI), low-temperature liquid nitrogen adsorption (LT-N2A), low-pressure carbon dioxide adsorption (LP-CDA), and nuclear magnetic resonance (NMR) based on six groups of different rank coal samples. The compressibility of coal matrix and pore\fracture were studied using HPMI data and NMR T2 spectrum under effective stress. The results show that the more accurate full pore characterization results can be obtained by selecting the optimal pore range measured by HPMI, LT-N2A, and LP-CDA and comparing it with the NMR pore results. The matrix compressibility of different rank coal samples shows that low-rank coal &gt; high-rank coal &gt; medium-rank coal. When the effective stress is less than 6 MPa, the microfractures are compressed rapidly, and the compressibility decreases slowly when the effective stress is more than 6 MPa. Thus, the compressibility of the adsorption pore is weak. Nevertheless, the adsorption pore has the most significant compression space because of the largest proportion in different pore structures. The variation trend of matrix compressibility and pore\fracture compressibility is consistent with the increase of coal rank. The compressibility decreases with the rise of reservoir heterogeneity and mechanical strength. The development of pore volume promotes compressibility. The research results have guiding significance for the exploration and development of CBM in different coal rank reservoirs.


2018 ◽  
Author(s):  
Dong Feng ◽  
Xingfang Li ◽  
Chaojie Zhao ◽  
Jing Li ◽  
Qing Liu ◽  
...  

2014 ◽  
Vol 962-965 ◽  
pp. 34-40
Author(s):  
Ning Yang ◽  
Shu Heng Tang ◽  
Song Hang Zhang ◽  
Jun Jie Yi

Gas shales have a complex pore structure. Using mercury porosimetry and nitrogen adsorption experiment on shale of Longtan Formation in southeastern of Hunan, the pore structure characteristics were contrast analyzed, influencing factors and its impact on reservoir-forming were discussed. Longtan Formation shale is composed of nanopores, include the cylinder pores with two ends open and parallel-plate pores with four sides open. The efficiency of mercury ejection ranges 31.45%~63.82%, 51.94% on average, pores uniformity is well. The size of nanopores is 5~30nm, taking up 94.74% of the total volume and 98.08% of specific surface area. Brittle minerals content is high, as an important parameter influencing pore development. The nanopores have a strong ability to absorb gas, methane molecule exist in a structured way.


2014 ◽  
Vol 962-965 ◽  
pp. 890-898
Author(s):  
Jin Ping Li ◽  
Da Zhen Tang ◽  
Ting Xu Yu ◽  
Gang Sun

Pore structure characteristics and the effect of lithotype and maceral on pore for three types of high-volatile bituminous coals from Binchang area were investigated by combined low-temperature nitrogen adsorption/desorption, nuclear magnetic resonance (NMR), scanning electron microscope (SEM) and maceral analysis. The low temperature N2 adsorption/desorption test results show that: micropores are more abundant than transitional pores with high BET surface area; two types of pore structures can be identified by adsorption/desorption isotherms; Pore morphology is mainly represented by well-connected, ink-bottled, cylindrical and parallel plate pores. NMR T2 distributions at full saturated condition are apparent or less obvious trimodal and three types of T2 distributions are identified; Seepage pores are better developed when compared with the middle-high rank coal. Further research found that the three coal lithotypes are featured by remarkably different pore structure characteristics and maceral contents of coal are linearly correlated to some of pore structure parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xun Zhao ◽  
Tao Feng ◽  
Ping Wang ◽  
Ze Liao

In order to grasp the effect of soft and hard coal pore structure on gas adsorption characteristics, based on fractal geometry theory, low-temperature nitrogen adsorption and constant temperature adsorption test methods are used to test the pore structure characteristics of soft coal and its influence on gas adsorption characteristics. We used box dimension algorithm to measure the fractal dimension and distribution of coal sample microstructure. The research results show that the initial nitrogen adsorption capacity of soft coal is greater than that of hard coal, and the adsorption hysteresis loop of soft coal is more obvious than that of hard coal. And the adsorption curve rises faster in the high relative pressure section. The specific surface area and pore volume of soft coal are larger than those of hard coal. The number of pores is much larger than that of hard coal. In particular, the superposition of the adsorption force field in the micropores and the diffusion in the mesopores enhance the adsorption potential of soft coal. Introducing the concept of adsorption residence time, it is concluded that more adsorption sites on the surface of soft coal make the adsorption and residence time of gas on the surface of soft coal longer. Fractal characteristics of the soft coal surface are more obvious. The saturated adsorption capacity of soft coal and the rate of reaching saturation adsorption are both greater than those of hard coal. The research results of this manuscript will provide a theoretical basis for in-depth analysis of the adsorption/desorption mechanism of coalbed methane in soft coal seams and the formulation of practical coalbed methane control measures.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yanyan Feng ◽  
Wen Yang ◽  
Wei Chu

Methane adsorption isotherms on coals with varying ash contents were investigated. The textural properties were characterized by N2adsorption/desorption isotherm at 77 K, and methane adsorption characteristics were measured at pressures up to 4.0 MPa at 298 K, 313 K, and 328 K, respectively. The Dubinin-Astakhov model and the Polanyi potential theory were employed to fit the experimental data. As a result, ash content correlated strongly to methane adsorption capacity. Over the ash range studied, 9.35% to 21.24%, the average increase in methane adsorption capacity was 0.021 mmol/g for each 1.0% rise in ash content. With the increasing ash content range of 21.24%~43.47%, a reduction in the maximum adsorption capacities of coals was observed. In addition, there was a positive correlation between the saturated adsorption capacity and the specific surface area and micropore volume of samples. Further, this study presented the heat of adsorption, the isosteric heat of adsorption, and the adsorbed phase specific heat capacity for methane adsorption on various coals. Employing the proposed thermodynamic approaches, the thermodynamic maps of the adsorption processes of coalbed methane were conducive to the understanding of the coal and gas simultaneous extraction.


Sign in / Sign up

Export Citation Format

Share Document