scholarly journals Nonlinear Dynamic Analysis of Solution Multiplicity of Buoyancy Ventilation in Two Vertically Connected Open Cavities with Unequal Heights

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yuxing Wang ◽  
Chunyu Wei

Solution multiplicity of natural ventilation in buildings is of much importance for personnel safety and ventilation design. In this paper, a new mathematical model of buoyancy pressure ventilation for two vertically connected open cavities is presented. Compared with the previous published papers studying two vertically connected open cavities with equal heights and hot source E2 < 0 in the upper room, we study two vertically connected open cavities with unequal heights and hot source E2 < 0 or E2 > 0 in the upper room. By solving and analyzing the equilibrium points and characteristic roots of the differential equations, we analyze the stability of two systems with upward flow pattern and downward pattern and obtain the criteria to determine the stability and existence of solutions for two scenarios. According to these criteria, the multiple steady states of buoyancy ventilation in two vertically connected open cavities with unequal heights and variable strength of hot sources can be obtained. These criteria can be used to design buoyancy ventilation or natural exhaust ventilation systems in two vertically connected open cavities. Compared with two stable states of buoyancy ventilation existing in two vertically connected open cavities with equal heights in the previously published papers, we find that more stable states and unstable states of buoyancy ventilation exist in two vertically connected open cavities with unequal heights in our paper. Finally, bifurcation diagrams and the phase portraits for the two scenarios are given.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Yuxing Wang ◽  
Chunyu Wei

The solution multiplicity of natural ventilation in buildings is very important to personnel safety and ventilation design. In this paper, a four-zone model of buoyancy ventilation in typical underground building is proposed. The underground structure is divided to four zones, a differential equation is established in each zone, and therefore, there are four differential equations in the underground structure. By solving and analyzing the equilibrium points and characteristic roots of the differential equations, we analyze the stability of three scenarios and obtain the criterions to determine the stability and existence of solutions for two scenarios. According to these criterions, the multiple steady states of buoyancy ventilation in any four-zone underground buildings for different stack height ratios and the strength ratios of the heat sources can be obtained. These criteria can be used to design buoyancy ventilation or natural exhaust ventilation systems in underground buildings. Compared with the two-zone model in (Liu et al. 2020), the results of the proposed four-zone model are more consistent with CFD results in (Liu et al. 2018). In addition, the results of proposed four-zone model are more specific and more detailed in the unstable equilibrium point interval. We find that the unstable equilibrium point interval is divided into two different subintervals corresponding to the saddle point of index 2 and the saddle focal equilibrium point of index 2, respectively. Finally, the phase portraits and vector field diagrams for the two scenarios are given.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Li-xin Yang ◽  
Xiao-jun Liu

This paper proposes a new fractional-order chaotic system with five terms. Firstly, basic dynamical properties of the fractional-order system are investigated in terms of the stability of equilibrium points, Jacobian matrices theoretically. Furthermore, rich dynamics with interesting characteristics are demonstrated by phase portraits, bifurcation diagrams numerically. Besides, the control problem of the new fractional-order system is discussed via numerical simulations. Our results demonstrate that the new fractional-order system has compound structure.


2019 ◽  
Vol 26 (3) ◽  
pp. 351-359
Author(s):  
Alexandra I. Kononova ◽  
Larisa G. Gagarina

In this work, the model of development of the P2P file exchange network organized by a torrent tracker is considered. The model is constructed on the basis of ordinary differential equations. The phase variables describing a status of a torrent tracker and the network organized by it (in first approximation is the number of the users of the tracker who are actively participate in information exchange, and the number of active torrents) are defined, the factors influencing the change of users number and the number of torrents are analyzed. On the basis of the analysis the system of differential equations, in first approximation describing evolution of the file exchange network organized by the torrent tracker — a hard dynamic model of evolution of the torrent tracker is written. Equilibrium points of hard model of evolution of the tracker are investigated, their possible quantity and type is described. All configurations of the general provision, possible in a hard model of evolution of the torrent tracker are described. The phase portrait of the hard model is represented. On the basis of the analysis of the hard model the system of differential equations describing evolution of a file exchange network with accounting of dependence of new users inflow intensity on a total quantity of potential audience of the torrent tracker, and also dependences of speed of torrents extinction on the number of users falling on one torrent — a soft dynamic model of evolution of a torrent tracker is written. Equilibrium points of a soft model of tracker evolution are investigated, their possible quantity and type is described. All configurations of the general provision, possible in a soft model of evolution of the torrent tracker are described. Phase portraits of each configuration are represented. The ratio of parameters necessary for the stability of the tracker a stable status is received. The influence of different administrative measures on a stock of the tracker stability in whole is analyzed. The need of support of torrents by administration at highly specialized torrent trackers with small potential audience is shown.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ndolane Sene

This paper presents a modified chaotic system under the fractional operator with singularity. The aim of the present subject will be to focus on the influence of the new model’s parameters and its fractional order using the bifurcation diagrams and the Lyapunov exponents. The new fractional model will generate chaotic behaviors. The Lyapunov exponents’ theories in fractional context will be used for the characterization of the chaotic behaviors. In a fractional context, the phase portraits will be obtained with a predictor-corrector numerical scheme method. The details of the numerical scheme will be presented in this paper. The numerical scheme will be used to analyze all the properties addressed in this present paper. The Matignon criterion will also play a fundamental role in the local stability of the presented model’s equilibrium points. We will find a threshold under which the stability will be removed and the chaotic and hyperchaotic behaviors will be generated. An adaptative control will be proposed to correct the instability of the equilibrium points of the model. Sensitive to the initial conditions, we will analyze the influence of the initial conditions on our fractional chaotic system. The coexisting attractors will also be provided for illustrations of the influence of the initial conditions.


2021 ◽  
Author(s):  
Nadjette Debbouche ◽  
Adel Ouannas ◽  
Iqbal M. Batiha ◽  
Giuseppe Grassi

Abstract Mathematical models based on fractional-order differential equations have recently gained interesting insights into epidemiological phenomena, by virtue of their memory effect and nonlocal nature. This paper investigates the nonlinear dynamic behaviour of a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives. The model is based on the Caputo operator and takes into account the daily new cases, the daily additional severe cases and the daily deaths. By analysing the stability of the equilibrium points and by continuously varying the values of the fractional order, the paper shows that the conceived COVID-19 pandemic model exhibits chaotic behaviours. The system dynamics are investigated via bifurcation diagrams, Lyapunov exponents, time series and phase portraits. A comparison between integer-order and fractional-order COVID-19 pandemic models highlights that the latter is more accurate in predicting the daily new cases. Simulation results, besides to confirm that the novel fractional model well fit the real pandemic data, also indicate that the numbers of new cases, severe cases and deaths undertake chaotic behaviours without any useful attempt to control the disease.


2012 ◽  
Vol 22 (02) ◽  
pp. 1250034 ◽  
Author(s):  
ZHENGDI ZHANG ◽  
QINSHENG BI

By introducing time-dependent power source, a periodically excited piecewise linear circuit with double-scroll is established. In the absence of the excitation, all possible equilibrium points as well as the stability conditions are presented. Analyzing the corresponding characteristic equations with perturbation method, Hopf bifurcation conditions associated with the equilibria are derived, which can be demonstrated by the numerical simulations. The Hopf bifurcations of the two symmetric equilibrium points may cause two symmetric periodic orbits, which lead to single-scroll chaotic attractors via sequences of period-doubling bifurcations with the variation of the parameters. The two chaotic attractors expand to interact with each other to form an enlarged chaotic attractor with double-scroll. The behaviors on the switching boundaries are investigated by the generalized Jacobian matrix. When periodic excitation is applied to work on the circuit, three periodic orbits with the frequency of the excitation may exist, which can be called generalized equilibrium points (GEPs) with the same characteristic polynomials as those of the corresponding equilibrium points for the autonomous case. It is shown that when the trajectories do not pass across the switching boundaries, the solutions are the same as the GEPs. However, when the trajectories pass across the switching boundaries, complicated behaviors will take place. Three forms of chaotic attractors via different bifurcations can be observed and the influence of the switching boundaries on the phase portraits is discussed to explore the mechanism of the dynamical evolution.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ndolane Sene ◽  
Ameth Ndiaye

In this paper, we consider a class of fractional-order systems described by the Caputo derivative. The behaviors of the dynamics of this particular class of fractional-order systems will be proposed and experienced by a numerical scheme to obtain the phase portraits. Before that, we will provide the conditions under which the considered fractional-order system’s solution exists and is unique. The fractional-order impact will be analyzed, and the advantages of the fractional-order derivatives in modeling chaotic systems will be discussed. How the parameters of the model influence the considered fractional-order system will be studied using the Lyapunov exponents. The topological changes of the systems and the detection of the chaotic and hyperchaotic behaviors at the assumed initial conditions and the considered fractional-order systems will also be investigated using the Lyapunov exponents. The investigations related to the Lyapunov exponents in the context of the fractional-order derivative will be the main novelty of this paper. The stability analysis of the model’s equilibrium points has been focused in terms of the Matignon criterion.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Dahlia Khaled Bahlool ◽  
Huda Abdul Satar ◽  
Hiba Abdullah Ibrahim

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect of varying the parameters. It is observed that the system has a chaotic dynamics.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Hongwei Luo ◽  
Jiangang Zhang ◽  
Wenju Du ◽  
Jiarong Lu ◽  
Xinlei An

A PI hydroturbine governing system with saturation and double delays is generated in small perturbation. The nonlinear dynamic behavior of the system is investigated. More precisely, at first, we analyze the stability and Hopf bifurcation of the PI hydroturbine governing system with double delays under the four different cases. Corresponding stability theorem and Hopf bifurcation theorem of the system are obtained at equilibrium points. And then the stability of periodic solution and the direction of the Hopf bifurcation are illustrated by using the normal form method and center manifold theorem. We find out that the stability and direction of the Hopf bifurcation are determined by three parameters. The results have great realistic significance to guarantee the power system frequency stability and improve the stability of the hydropower system. At last, some numerical examples are given to verify the correctness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document