scholarly journals The Association of the Phylogenetic Typing of the Klebsiella pneumoniae Isolates with Antibiotic Resistance

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Shabnam Baghbanijavid ◽  
Hossein Samadi Kafil ◽  
Safar Farajniya ◽  
Seyed Reza Moaddab ◽  
Hasan Hosainzadegan ◽  
...  

Klebsiella pneumoniae complex (KPC) accounts for approximately one-third of all Gram-negative infections. Moreover, it is highly resistant and can taxonomically be distributed into KpI, KpII, and KpIII phylogroups. This study aimed to investigate the distribution of phylogenetic groups and the relationship between them and antibiotic resistance patterns. For this purpose, we collected KPC isolates from Tabriz, Iran, between 2018 and 2020. Antimicrobial susceptibility testing was performed by disk diffusion agar, and phylogenetic groups were then examined using gyrA restriction fragment length polymorphism (RFLP) and parC PCR methods. A total of 100 KPC isolates were obtained from the clinical specimens (urine, respiratory secretion, blood, wounds, and trachea). The enrolled patients included 47 men and 53 women aged from 1 to 91 years old. The highest sensitivity was found related to fosfomycin as 85%, followed by amikacin as 66%. The three phylogenetically groups by the RFLP-PCR method were found in KPC, 96% (96 isolates) as KpI, 3% (3 isolates) as KpII, and 1% (1isolate) as KpIII. The highest antibiotic resistance was observed in KpI. It was shown that a valid identification of three phylogenetic groups of KPC can be done by combining both gyrA PCR-RFLP and parC PCR. Of note, the KpI group was also observed as the dominant phylogenetic group with the highest resistance to antibiotics.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Mourouge Saadi Alwash ◽  
Hawraa Mohammed Al-Rafyai

Surface water contamination remains a major worldwide public health concern and may contribute to the dissemination of antibiotic-resistant bacteria. The Al-Hillah River in the city of Babylon Province, Iraq, diverts flows from the Euphrates River. Because of its importance in irrigation and population density, it faces several forced and unforced changes due to anthropogenic activities. To evaluate water quality, water samples were collected from three sites with different anthropogenic pressures along the Al-Hillah River. These samples were subjected to bacteriological analyses, i.e., total coliforms, Escherichia coli, and faecal enterococci. The phylogenetic groups of the E. coli isolates (n = 61) were typed by rapid PCR-based analyses. Representatives of each isolate were tested phenotypically for resistance to six classes of antibiotics and characterized according to their phylogenetic groups. The results demonstrated the highest resistance levels were to β-lactam antibiotics, followed by fosfomycin and aminoglycosides. Escherichia coli isolates belonging to phylogenetic groups A and B2 were the most common and were characterized by a higher prevalence of antibiotic resistance. This study is important for understanding the current conditions of the Al-Hillah River, as the data reveal a high prevalence of multiresistance among E. coli isolates circulating at the three sampling sites.


2005 ◽  
Vol 71 (6) ◽  
pp. 2840-2847 ◽  
Author(s):  
M. Wittwer ◽  
J. Keller ◽  
T. M. Wassenaar ◽  
R. Stephan ◽  
D. Howald ◽  
...  

ABSTRACT The diversity and genetic interrelation of Campylobacter jejuni and C. coli isolated from Swiss poultry were assessed by three independent typing methods. Samples were derived prior to slaughter from 100 randomly selected flocks (five birds per flock) raised on three different farm types. The observed flock prevalence was 54% in total, with 50% for conventional and 69% for free-range farms. Birds held on farms with a confined roaming area had the lowest prevalence of 37%. Campylobacter isolates were characterized by amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism of flaA PCR fragments (flaA-RFLP), and disk diffusion testing for eight antimicrobial agents that are commonly used in veterinary or human medicine in Switzerland. Analysis of the genotypic results indicates that the Campylobacter population in Swiss poultry is genetically highly diverse. Nevertheless, occasionally, isolates with identical or nearly identical characteristics were isolated from different farms or farm types in different locations. Genetic typing by AFLP and flaA-RFLP was found to be complementary. The majority of isolates (67%) were susceptible to all tested antibiotics; however, single, double, and triple resistances were observed in 7%, 23%, and 2% of the strains, respectively. There was no correlation between genotype and antibiotic resistance. Surprisingly, sulfonamide resistance was frequently found together with streptomycin resistance. Our findings illustrate the results of common genetic exchange in the studied bacterial population.


PRILOZI ◽  
2014 ◽  
Vol 35 (2) ◽  
pp. 31-38
Author(s):  
Ana Kaftandzieva ◽  
Elena Trajkovska-Dokic ◽  
Vesna Kotevska ◽  
Zaklina Cekovska ◽  
Gordana Jankoska

Abstract The aim of the study was to evaluate the association of drug resistance with β-lactamase gene types in ESBL positive E. coli and Klebsiella pneumoniae-Kp. Material and methods: A total of 251 ESBL-positive E. coli and Kp isolates obtained from urine, tracheal aspirate, wound swab and blood from patients hospitalised at the University Clinics in Skopje were detected using the ESBL set and automated Vitek 2 system. Vitek was also used for susceptibility testing (determination of MIC of 17 antimicrobial agents). Multiplex PCR was used to identify genes for different types of ESBLs in a 100 randomly selected, ESBL positive strains. Results: More of the 87 ESBL typeable isolates (61%) harbour two or more bla genes and the frequency of antibiotic resistance was high in these isolates, compared to those with a single gene. Isolates with ≥ 3 genes were highly resistant to beta-lactams and non-beta lactams used. The degree of resistance to 3rd generation cephalosporins was also high in these isolates (MIC ≥ 64). More of the ESBL-positive isolates showed higher resistance to cefotaxime than to ceftazidime. Conclusion: Identification of the genes is necessary for the surveillance of their transmission in hospitals. Surveillance of antibiotic resistance patterns are crucial to overcome the problems associated with ESBLs.


2017 ◽  
Vol 29 (3) ◽  
pp. 316-320 ◽  
Author(s):  
Munashe Chigerwe ◽  
Vengai Mavangira ◽  
Barbara A. Byrne ◽  
John A. Angelos

Tube cystostomy is a surgical method used for managing obstructive urolithiasis and involves placement of a Foley catheter into the urinary bladder. We identified and evaluated the antibiotic resistance patterns of bacteria isolated from indwelling Foley catheters following tube cystostomy in goats with obstructive urolithiasis. Urine samples collected over a 10-y period from catheter tips at the time of removal were submitted for bacteriologic culture and antibiotic susceptibility testing. Resistance patterns to antibiotics, trends in the resistance patterns over the study period, and the probability of a bacterial isolate being resistant as a function of the identity of the isolate and antibiotic tested were determined. A total of 103 urine samples from 103 male goats with obstructive urolithiasis managed surgically with tube cystostomy were included in the study. Aerococcus (36.9%) and Enterococcus (30.1%) were isolated most frequently. The susceptibility patterns of all bacteria isolated did not change over the study period ( p > 0.05). Proportions of isolates resistant to 1, 2, and ≥3 antibiotics were 36.9%, 18.5%, and 23.3%, respectively. Thus, 41.8% of bacterial isolates were resistant to 2 or more antibiotics tested. The probability of Aerococcus spp., Escherichia coli, and Pseudomonas aeruginosa isolates to be resistant to ampicillin, ceftiofur, erythromycin, penicillin, or tetracycline ranged from 0.59 to 0.76.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S464-S466
Author(s):  
Ryan Beaver ◽  
Hosoon Choi ◽  
Chetan Jinadatha ◽  
Keith S Kaye ◽  
Piyali Chatterjee ◽  
...  

Abstract Background Klebsiella pneumoniae is among the leading causes of healthcare-associated infections (HAI). Multidrug-resistant (MDR) Klebsiella variants are difficult to treat and have been reported with increasing frequency in hospitals. Whole genome multi-locus sequence typing (wg-MLST) of K. pneumoniae HAI isolates was used to compare antibiotic resistance genetic patterns against epidemiologic typing. Figure 1. Prevalence of ABX resistance genes for each drug class. Figure 2. Prevalence of ABX resistance genes by hospital. Methods Forty-six clinical bacterial HAI isolates were collected from patients admitted to two disparate tertiary care hospitals in Detroit, Michigan between 2017 and 2019. Data output from wg-MLST was de novo assembled using SPAdes (version 3.7.1) assembler on the Bionumerics calculation engine. Minimum spanning tree (MST) analysis categorized isolates into unique MLST Pasteur serotypes (ST). Antimicrobial resistance genes and/or chromosomal mutations were identified using the ResFinder Database (version 3.2). K. pneumoniae isolates were compared for antibiotic-resistance patterns by hospital, unit, and ST. Figure 3. Hospital 1 clusters and strains that detected gene qnr1, arranged by unit for visual comparison. Figure 4. Sample of clinically significant genes and prevalence, excluding SHV family of genes for simplicity. Results There was significant genetic diversity among the isolates, and no predominant strain was identified. MST analysis revealed 17 unique strains. Only six strains had genetically unique resistance genes detected in more than one isolate, and only three of six were hospital-specific; none were unit-specific. Out of the 75 unique resistance genes detected, only 8 genes had a prevalence >50%: oqxA (100%), oqxB (100%), fosA (89%), blaCTX-M-15 (76%), aac(6’)-Ib-cr (61%), blaTEM-1B (52%), blaOXA-1 (52%), and catB3 (52%). No colistin resistance genes were detected. Of the remaining 69 low-prevalence resistance genes, only 8 hospital-specific genes were detected in more than one isolate (qnrB1, blaSHV-1, blaSHV-110, ac(6’)-Ib3, blaCTX-M-3, blaSHV-36, blaSHV-80, blaSHV-178) with a prevalence range of 4%-22%. Conclusion Our genetic analysis of antibiotic resistance patterns and wg-MLST revealed significant heterogeneity among the isolates, indicating no common source of transmission for either hospital. Although K. pneumoniae is a very common nosocomial pathogen, etiologic analysis suggests diverse community strains (e.g., gut colonization) may actually be responsible for previously-designated HAI. Disclosures Chetan Jinadatha, MD, MPH, AHRQ (Research Grant or Support)Department of Veterans Affairs (Other Financial or Material Support, Owner: Department of Veterans Affairs. Licensed to: Xenex Disinfection System, San Antonio, TX)Inventor (Other Financial or Material Support, Methods for organizing the disinfection of one or more items contaminated with biological agents)NiH/NINR (Research Grant or Support)NSF (Research Grant or Support)Xenex Healthcare Services (Research Grant or Support) Mark Stibich, PhD MHS, Xenex Disinfection Services, Inc (Board Member, Employee)


2018 ◽  
Vol 12 (3) ◽  
pp. 41-45
Author(s):  
Mohammad Bokaeian ◽  
Shahram Shahraki Zahedani ◽  
Abbasali Delarampoor ◽  
Mohammadreza Atashgah ◽  
Bahram Dahmarde ◽  
...  

2020 ◽  
Vol 2 (2) ◽  
pp. 32-36
Author(s):  
Jamshid Ayatollahi ◽  
◽  
Mohammad Sharifyazdi ◽  
Razieh Fadakarfard ◽  
Seyed Hossein Shahcheraghi ◽  
...  

Background: In recent years, due to the inappropriate use of antibiotics, drug resistance has increased in gram negative bacilli, including Klebsiella pneumoniae. Drug resistance is associated with an increase in mortality and therapeutic costs. Therefore, determination of an antibiotic resistance pattern for choosing the appropriate treatment for infections caused by this bacterium seems necessary. This study was conducted to determine the antibiotic resistance pattern of Klebsiella pneumoniae species isolated from patients referring to Ziaee Hospital in Ardakan in 2016-2017. Materials and Methods: For this descriptive-analytic study, all positive cultures of Klebsiella pneumoniae in patients referred to Ziaee Hospital in Ardakan during 2016 to 2017, were evaluated. Antibiotic resistance patterns of the samples were determined by the standard method of propagation of the disk from 12 different antibiotics and data analyzed by SPSS 21 software. Results and discussions: The results of this study, which were performed on 75 samples, showed that 22 (29.3%) were male and 53 (70.7%) were female. Klebsiella's resistance to clarithromycin was 100%, but was 100% susceptible to amikacin. The percentage of Klebsiella's resistance to ampicillin was 78.3%, cefalotin 75%, cotrimoxazole 43.9%, ceftriaxone 32%, ciprofloxacin 30.9%, cefotaxime 24%, and ampicillin 20%. The highest sensitivity of Klebsiella pneumoniae for antibiotics was 100% for amikacin, 82.8% for meropenem and 82% for cefepime. Due to the high prevalence of resistance in Klebsiella samples, there is a need for strict measures in the administration of antibiotics. Antibiotic resistance can also be reduced by choosing the appropriate antibiotic for treatment and by taking antibiotic susceptibility tests.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Mostafa Boroumand ◽  
Asghar Sharifi ◽  
Mohammad Amin Ghatei ◽  
Mohsen Sadrinasab

Background: Uropathogenic Escherichia coli (UPEC) strains, encoding superficial and secretory virulence factors, can lead to colonization and facilitation of bacterial growth in the host urinary tract, causing Urinary Tract Infection (UTI). Objectives: This study determined the ability of biofilm formation by the Congo red agar (CRA) method, the presence of virulence genes using the multiplex polymerase chain reaction (PCR) method, and the relationship between biofilm formation and antibiotic resistance patterns and virulence genes in E. coli clinical isolates in Yasuj. Methods: This cross-sectional study was performed on 144 UPEC isolates collected in 2017. Biofilm formation was detected by the CRA phenotypic assay and virulence factors by the multiplex PCR method. Antibiotic resistance tests were performed by the Kirby-Bauer method. Results: Out of 144 isolates of E. coli, 22 (19.4%) isolates showed to be strong biofilm producers, 27 (23.8%) moderate biofilm producers, and 64 (56.3%) weak biofilm producers. A significant relationship was observed between biofilm-producing strains and resistance to ampicillin (P = 0.020) and cotrimoxazole (P = 0.038). The virulence genes in strong biofilm producers included iutA (95%), FimH (93%), ompT (90%), PAI (90%), and TraT (81%) genes. The phylogroup B2 carried the most virulence genes. A significant correlation was observed between E. coli phylogenetic groups and aer (P = 0.019), iroN (P = 0.042), and ompT (P = 0.032) virulence genes. Conclusions: The results of this study showed a high prevalence of virulence genes, and antibiotic-resistant E. coli strains capable of biofilm formation. The results of this study may help elucidate the pathogenesis of UPEC and facilitate better treatment strategies for patients with UTIs in this geographic area.


2015 ◽  
Vol 68 (5) ◽  
pp. 428-431 ◽  
Author(s):  
Abdollah Derakhshandeh ◽  
Roya Firouzi ◽  
Mohammad Motamedifar ◽  
Sina Arabshahi ◽  
Aytak Novinrooz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document