scholarly journals Establishment and Validation of a Gene Signature-Based Prognostic Model to Improve Survival Prediction in Adrenocortical Carcinoma Patients

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaoqin Ge ◽  
Zhenzhen Liu ◽  
Xuehua Jiao ◽  
Xueyan Yin ◽  
Xiujie Wang ◽  
...  

Background. The current guideline for the management of adrenocortical carcinoma (ACC) is insufficient for accurate risk prediction to guide adjuvant therapy. Given frequent and severe therapeutic side effects, a better estimate of survival is warranted for risk-specific assignment to adjuvant treatment. We attempted to construct an integrated model based on a prognostic gene signature and clinicopathological features to improve risk stratification and survival prediction in ACC. Methods. Using a series of bioinformatic and statistical approaches, a gene-expression signature was established and validated in two independent cohorts. By combining the signature with clinicopathological features, a decision tree was generated to improve risk stratification, and a nomogram was constructed to personalize risk prediction. Time-dependent receiver operating characteristic (tROC) and calibration analysis were performed to evaluate the predictive power and accuracy. Results. A three-gene signature could discriminate high-risk patients well in both training and validation cohorts. Multivariate regression analysis demonstrated the signature to be an independent predictor of overall survival. The decision tree could identify risk subgroups powerfully, and the nomogram showed high accuracy of survival prediction. Particularly, expression of a gene hitherto unknown to be dysregulated in ACC, TIGD1, was shown to be prognostically relevant. Conclusion. We propose a novel gene signature to guide decision-making about adjuvant therapy in ACC. The score shows unprecedented survival prediction and hence constitutes a huge step towards personalized management. As a secondary important finding, we report the discovery and validation of a new oncogene, TIGD1, which was consistently overexpressed in ACC. TIGD1 might shed further light on the biology of ACC and might give rise to targeted therapies that not only apply to ACC but potentially also to other malignancies.

2021 ◽  
Vol 22 (21) ◽  
pp. 12025
Author(s):  
Maryam Yavartanoo ◽  
Gwan-Su Yi

Melanoma is one of the most aggressive types of skin cancer, with significant heterogeneity in overall survival. Currently, tumor-node-metastasis (TNM) staging is insufficient to provide accurate survival prediction and appropriate treatment decision making for several types of tumors, such as those in melanoma patients. Therefore, the identification of more reliable prognosis biomarkers is urgently essential. Recent studies have shown that low immune cells infiltration is significantly associated with unfavorable clinical outcome in melanoma patients. Here we constructed a prognostic-related gene signature for melanoma risk stratification by quantifying the levels of several cancer hallmarks and identify the Wnt/β-catenin activation pathway as a primary risk factor for low tumor immunity. A series of bioinformatics and statistical methods were combined and applied to construct a Wnt-immune-related prognosis gene signature. With this gene signature, we computed risk scores for individual patients that can predict overall survival. To evaluate the robustness of the result, we validated the signature in multiple independent GEO datasets. Finally, an overall survival-related nomogram was established based on the gene signature and clinicopathological features. The Wnt-immune-related prognostic risk score could better predict overall survival compared with standard clinicopathological features. Our results provide a comprehensive map of the oncogene-immune-related gene signature that can serve as valuable biomarkers for better clinical decision making.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jimin He ◽  
Chun Zeng ◽  
Yong Long

Glioma is a frequently seen primary malignant intracranial tumor, characterized by poor prognosis. The study is aimed at constructing a prognostic model for risk stratification in patients suffering from glioma. Weighted gene coexpression network analysis (WGCNA), integrated transcriptome analysis, and combining immune-related genes (IRGs) were used to identify core differentially expressed IRGs (DE IRGs). Subsequently, univariate and multivariate Cox regression analyses were utilized to establish an immune-related risk score (IRRS) model for risk stratification for glioma patients. Furthermore, a nomogram was developed for predicting glioma patients’ overall survival (OS). The turquoise module ( cor = 0.67 ; P < 0.001 ) and its genes ( n = 1092 ) were significantly pertinent to glioma progression. Ultimately, multivariate Cox regression analysis constructed an IRRS model based on VEGFA, SOCS3, SPP1, and TGFB2 core DE IRGs, with a C-index of 0.811 (95% CI: 0.786-0.836). Then, Kaplan-Meier (KM) survival curves revealed that patients presenting high risk had a dismal outcome ( P < 0.0001 ). Also, this IRRS model was found to be an independent prognostic indicator of gliomas’ survival prediction, with HR of 1.89 (95% CI: 1.252-2.85) and 2.17 (95% CI: 1.493-3.14) in the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets, respectively. We established the IRRS prognostic model, capable of effectively stratifying glioma population, convenient for decision-making in clinical practice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Liu ◽  
Jianjun Lu ◽  
Wenli Li

Uveal melanoma (UM) is a subtype of melanoma with poor prognosis. This study aimed to construct a new prognostic gene signature that can be used for survival prediction and risk stratification of UM patients. In this work, transcriptome data from the Molecular Signatures Database were used to identify the cancer hallmarks most relevant to the prognosis of UM patients. Weighted gene co-expression network, univariate least absolute contraction and selection operator (LASSO), and multivariate Cox regression analyses were used to construct the prognostic gene characteristics. Kaplan–Meier and receiver operating characteristic (ROC) curves were used to evaluate the survival predictive ability of the gene signature. The results showed that glycolysis and immune response were the main risk factors for overall survival (OS) in UM patients. Using univariate Cox regression analysis, 238 candidates related to the prognosis of UM patients were identified (p &lt; 0.05). Using LASSO and multivariate Cox regression analyses, a six-gene signature including ARPC1B, BTBD6, GUSB, KRTCAP2, RHBDD3, and SLC39A4 was constructed. Kaplan–Meier analysis of the UM cohort in the training set showed that patients with higher risk scores had worse OS (HR = 2.61, p &lt; 0.001). The time-dependent ROC (t-ROC) curve showed that the risk score had good predictive efficiency for UM patients in the training set (AUC &gt; 0.9). Besides, t-ROC analysis showed that the predictive ability of risk scores was significantly higher than that of other clinicopathological characteristics. Univariate and multivariate Cox regression analyses showed that risk score was an independent risk factor for OS in UM patients. The prognostic value of risk scores was further verified in two external UM cohorts (GSE22138 and GSE84976). Two-factor survival analysis showed that UM patients with high hypoxia or immune response scores and high risk scores had the worst prognosis. Moreover, a nomogram based on the six-gene signature was established for clinical practice. In addition, risk scores were related to the immune infiltration profiles. Taken together, this study identified a new prognostic six-gene signature related to glycolysis and immune response. This six-gene signature can not only be used for survival prediction and risk stratification but also may be a potential therapeutic target for UM patients.


2020 ◽  
Vol 12 ◽  
pp. 175883592093790
Author(s):  
Jing Sun ◽  
Tianyu Zhao ◽  
Di Zhao ◽  
Xin Qi ◽  
Xuanwen Bao ◽  
...  

Background: Patients with early-stage lung adenocarcinoma (LUAD) exhibit significant heterogeneity in overall survival. The current tumour-node-metastasis staging system is insufficient to provide precise prediction for prognosis. Methods: We quantified the levels of various hallmarks of cancer and identified hypoxia as the primary risk factor for overall survival in early-stage LUAD. Different bioinformatic and statistical methods were combined to construct a robust hypoxia-related gene signature for prognosis. Furthermore, a decision tree and a nomogram were constructed based on the gene signature and clinicopathological features to improve risk stratification and quantify risk assessment for individual patients. Results: The hypoxia-related gene signature discriminated high-risk patients at an early stage in our investigated cohorts. Survival analyses demonstrated that our gene signature served as an independent risk factor for overall survival. The decision tree identified risk subgroups powerfully, and the nomogram exhibited high accuracy. Conclusions: Our study might contribute to the optimization of risk stratification for survival and personalized management of early-stage LUAD.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi68-vi68
Author(s):  
Lei Wen ◽  
hui Wang ◽  
Mingyao Lai ◽  
Changguo Shan ◽  
Linbo Cai

Abstract OBJECTIVE The aim of our study was to establish an autophagy-related signature for individualized risk stratification and prognosis prediction in LGG. METHODS RNA-sequencing data from The Cancer Genome Atlas (TCGA), Genome Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) were used. The 232 ARGs were obtained from the Human Autophagy Database (HADb). Univariate and Lasso regression were employed to identify differentially expressed autophagy-related genes (ARGs) and establish a prognostic signature whose performance was evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell’s concordance index (C-index) and calibration curve. RESULTS Fifty-three autophagy-related DEGs were identified. Four autophagy-related genes (DIRAS3, GNAI3, PTK6, and BIRC5) were selected to establish the prognostic signature and verified in the CGGA validation cohorts. Univariate and multivariate Cox regression indicated that the autophagy signature (HR, 95%CI, P) was an independent predictor of prognosis in LGG. Finally, a prognostic nomogram incorporating age, grade, targeted therapy, new event, tumor status and autophagy signature achieved excellent predicative performance (AUC 0.907, 0.865 and 0.858 for 1-year, 3-year and 5-year survival, respectively) verified by Time-dependent ROC, C-index (0.844, 95% CI, 0.799 to 0.889; P = 1.01e-12) and calibration plots. CONCLUSION The present study constructed a robust four autophagy-related gene signature. A prognostic nomogram in risk stratification and prediction of overall survival in LGG was established. The findings may be beneficial to individualized survival prediction and medical decision-making for LGG.


2021 ◽  
Author(s):  
Kexun Zhou ◽  
Huaicheng Tan ◽  
Ting Yu ◽  
Chunhua Liu ◽  
Zhenyu Ding ◽  
...  

Abstract Background: Pyroptosis is an important component of the tumor microenvironment, associated with the occurrence and progression of cancer. However, the expression of pyroptosis-related genes and its impact on the prognosis of colon cancer (CC) remains unclear. Here, we constructed and validated a pyroptosis-related genes signature to predict the prognosis of patients with CC.Methods: Public data source was obtained to screen out candidate genes for further analysis. Various methods were combined to construct a robust pyroptosis-related genes signature for predicting the prognosis of patients with CC. Based on the gene signature and clinical features, a decision tree and nomogram were developed to improve risk stratification and quantify risk assessment for individual patients.Results: The pyroptosis-related genes signature successfully discriminated CC patients with high-risk in the training cohorts. The prognostic value of this signature was further confirmed in independent validation cohort. Multivariable Cox regression and stratified survival analysis revealed this signature was an independent prognostic factor for CC patients. The decision tree identified risk subgroups powerfully, and the nomogram incorporating the gene signature and clinical risk factors performed well in the calibration plots.Conclusions: Pyroptosis-related genes signature was an independent prognostic factor, and can be used to predict the prognosis of patients with CC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Qi ◽  
Rui Wang ◽  
Yuxin Lin ◽  
Donghui Yan ◽  
Jiachen Zuo ◽  
...  

BackgroundColon cancer (CC) is a common gastrointestinal malignant tumor with high heterogeneity in clinical behavior and response to treatment, making individualized survival prediction challenging. Ferroptosis is a newly discovered iron-dependent cell death that plays a critical role in cancer biology. Therefore, identifying a prognostic biomarker with ferroptosis-related genes provides a new strategy to guide precise clinical decision-making in CC patients.MethodsAlteration in the expression profile of ferroptosis-related genes was initially screened in GSE39582 dataset involving 585 CC patients. Univariate Cox regression analysis and LASSO-penalized Cox regression analysis were combined to further identify a novel ferroptosis-related gene signature for overall survival prediction. The prognostic performance of the signature was validated in the GSE17536 dataset by Kaplan-Meier survival curve and time-dependent ROC curve analyses. Functional annotation of the signature was explored by integrating GO and KEGG enrichment analysis, GSEA analysis and ssGSEA analysis. Furthermore, an outcome risk nomogram was constructed considering both the gene signature and the clinicopathological features.ResultsThe prognostic signature biomarker composed of 9 ferroptosis-related genes accurately discriminated high-risk and low-risk patients with CC in both the training and validation datasets. The signature was tightly linked to clinicopathological features and possessed powerful predictive ability for distinct clinical subgroups. Furthermore, the risk score was confirmed to be an independent prognostic factor for CC patients by multivariate Cox regression analysis (p &lt; 0.05). Functional annotation analyses showed that the prognostic signature was closely correlated with pivotal cancer hallmarks, particularly cell cycle, transcriptional regulation, and immune-related functions. Moreover, a nomogram with the signature was also built to quantify outcome risk for each patient.ConclusionThe novel ferroptosis-related gene signature biomarker can be utilized for predicting individualized prognosis, optimizing survival risk assessment and facilitating personalized management of CC patients.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Thomas Sonnweber ◽  
Eva-Maria Schneider ◽  
Manfred Nairz ◽  
Igor Theurl ◽  
Günter Weiss ◽  
...  

Abstract Background Risk stratification is essential to assess mortality risk and guide treatment in patients with precapillary pulmonary hypertension (PH). We herein compared the accuracy of different currently used PH risk stratification tools and evaluated the significance of particular risk parameters. Methods We conducted a retrospective longitudinal observational cohort study evaluating seven different risk assessment approaches according to the current PH guidelines. A comprehensive assessment including multi-parametric risk stratification was performed at baseline and 4 yearly follow-up time-points. Multi-step Cox hazard analysis was used to analyse and refine risk prediction. Results Various available risk models effectively predicted mortality in patients with precapillary pulmonary hypertension. Right-heart catheter parameters were not essential for risk prediction. Contrary, non-invasive follow-up re-evaluations significantly improved the accuracy of risk estimations. A lack of accuracy of various risk models was found in the intermediate- and high-risk classes. For these patients, an additional evaluation step including assessment of age and right atrium area improved risk prediction significantly. Discussion Currently used abbreviated versions of the ESC/ERS risk assessment tool, as well as the REVEAL 2.0 and REVEAL Lite 2 based risk stratification, lack accuracy to predict mortality in intermediate- and high-risk precapillary pulmonary hypertension patients. An expanded non-invasive evaluation improves mortality risk prediction in these individuals.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ashwath Radhachandran ◽  
Anurag Garikipati ◽  
Nicole S. Zelin ◽  
Emily Pellegrini ◽  
Sina Ghandian ◽  
...  

Abstract Background Acute heart failure (AHF) is associated with significant morbidity and mortality. Effective patient risk stratification is essential to guiding hospitalization decisions and the clinical management of AHF. Clinical decision support systems can be used to improve predictions of mortality made in emergency care settings for the purpose of AHF risk stratification. In this study, several models for the prediction of seven-day mortality among AHF patients were developed by applying machine learning techniques to retrospective patient data from 236,275 total emergency department (ED) encounters, 1881 of which were considered positive for AHF and were used for model training and testing. The models used varying subsets of age, sex, vital signs, and laboratory values. Model performance was compared to the Emergency Heart Failure Mortality Risk Grade (EHMRG) model, a commonly used system for prediction of seven-day mortality in the ED with similar (or, in some cases, more extensive) inputs. Model performance was assessed in terms of area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. Results When trained and tested on a large academic dataset, the best-performing model and EHMRG demonstrated test set AUROCs of 0.84 and 0.78, respectively, for prediction of seven-day mortality. Given only measurements of respiratory rate, temperature, mean arterial pressure, and FiO2, one model produced a test set AUROC of 0.83. Neither a logistic regression comparator nor a simple decision tree outperformed EHMRG. Conclusions A model using only the measurements of four clinical variables outperforms EHMRG in the prediction of seven-day mortality in AHF. With these inputs, the model could not be replaced by logistic regression or reduced to a simple decision tree without significant performance loss. In ED settings, this minimal-input risk stratification tool may assist clinicians in making critical decisions about patient disposition by providing early and accurate insights into individual patient’s risk profiles.


Sign in / Sign up

Export Citation Format

Share Document