scholarly journals Bayesian Uncertainty Identification of Model Parameters for the Jointed Structures with Nonlinearity

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhanpeng Shen ◽  
Xinen Liu ◽  
Chaoping Zang ◽  
Shaoquan Hu

Jointed structures in engineering naturally perform with some of nonlinearity and uncertainty, which significantly affect the dynamic characteristics of the structural system. In this paper, the method of Bayesian uncertainty identification of model parameters for the jointed structures with local nonlinearity is proposed. Firstly, the nonlinear stiffness and damping of the joints under the random excitation are represented with functions of excitation magnitude in terms of the equivalent linearization. The process of uncertainty identification is separated from the representation of local nonlinearity. In this way, the dynamic behavior of the joints is penetratingly characterized instead of ascribing the nonlinearity to uncertainty. Secondly, a variable-expanded Bayesian (VEB) method is originally proposed to identify the mixed of aleatory and epistemic uncertainties of model parameters. Different from traditional Bayesian identification, the aleatory uncertainties of model parameters are identified as one of the most important parts rather than only measurement noise of output. Notablely, a series of intermediate variables are introduced to expand the parameter with aleatory uncertainty in order to overcome the difficulty of establishing the likelihood function. Moreover, a 3-DOF numerical example is illustrated with case studies to verify the proposed method. The influence of observed sample size and prior distribution selection on the identification results is tested. Furthermore, an engineering example of the jointed structure with rubber isolators is performed to show the practicability of the proposed method. It is indicated that the computational model updated with the accurately identified parameters with both nonlinearity and uncertainty has shown the excellent predictive capability.

2021 ◽  
Author(s):  
Alwin Förster ◽  
Lars Panning-von Scheidt

Abstract Turbomachines experience a wide range of different types of excitation during operation. On the structural mechanics side, periodic or even harmonic excitations are usually assumed. For this type of excitation there are a variety of methods, both for linear and nonlinear systems. Stochastic excitation, whether in the form of Gaussian white noise or narrow band excitation, is rarely considered. As in the deterministic case, the calculations of the vibrational behavior due to stochastic excitations are even more complicated by nonlinearities, which can either be unintentionally present in the system or can be used intentionally for vibration mitigation. Regardless the origin of the nonlinearity, there are some methods in the literature, which are suitable for the calculation of the vibration response of nonlinear systems under random excitation. In this paper, the method of equivalent linearization is used to determine a linear equivalent system, whose response can be calculated instead of the one of the nonlinear system. The method is applied to different multi-degree of freedom nonlinear systems that experience narrow band random excitation, including an academic turbine blade model. In order to identify multiple and possibly ambiguous solutions, an efficient procedure is shown to integrate the mentioned method into a path continuation scheme. With this approach, it is possible to track jump phenomena or the influence of parameter variations even in case of narrow band excitation. The results of the performed calculations are the stochastic moments, i.e. mean value and variance.


Author(s):  
R. Chander ◽  
M. Meyyappa ◽  
S. Hanagud

Abstract A frequency domain identification technique applicable to damped distributed structural dynamic systems is presented. The technique is developed for beams whose behavior can be modeled using the Euler-Bernoulli beam theory. External damping of the system is included by means of a linear viscous damping model. Parameters to be identified, mass, stiffness and damping distributions are assumed to be continuous functions over the beam. The response at a discrete number of points along the length of the beam for a given forcing function is used as the data for identification. The identification scheme involves approximating the infinite dimensional response and parameter spaces by using quintic B-splines and cubic cardinal splines, respectively. A Galerkin type weighted residual procedure, in conjunction with the least squares technique, is employed to determine the unknown parameters. Numerically simulated response data for an applied impulse load are utilized to validate the developed technique. Estimated values for the mass, stiffness and damping distributions are discussed.


1998 ◽  
Vol 120 (1) ◽  
pp. 63-73 ◽  
Author(s):  
K. N. Morman ◽  
E. Nikolaidis ◽  
J. Rakowska ◽  
S. Seth

A constitutive equation of the differential type is introduced to model the nonlinear viscoelastic response behavior of elastomeric bearings in large-scale system simulations for vibration assessment and component loads prediction. The model accounts for the nonlinear dependence of dynamic stiffness and damping on vibration amplitude commonly observed in the behavior of bearings made of particle-reinforced elastomers. A testing procedure for the identification of the model parameters from bearing component test data is described. The experimental and analytical results for predicting the behavior of four (4) different car bushings are presented. In an example application, the model is incorporated in an ADAMS simulation to study the dynamic behavior of a car rear suspension.


2017 ◽  
Vol 14 (18) ◽  
pp. 4295-4314 ◽  
Author(s):  
Dan Lu ◽  
Daniel Ricciuto ◽  
Anthony Walker ◽  
Cosmin Safta ◽  
William Munger

Abstract. Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.


2016 ◽  
Author(s):  
Kassian Kobert ◽  
Alexandros Stamatakis ◽  
Tomáš Flouri

The phylogenetic likelihood function is the major computational bottleneck in several applications of evolutionary biology such as phylogenetic inference, species delimitation, model selection and divergence times estimation. Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional likelihood vectors for every node of the tree. Vector entries for which all input data are identical result in redundant likelihood operations which, in turn, yield identical conditional values. Such operations can be omitted for improving run-time and, using appropriate data structures, reducing memory usage. We present a fast, novel method for identifying and omitting such redundant operations in phylogenetic likelihood calculations, and assess the performance improvement and memory saving attained by our method. Using empirical and simulated data sets, we show that a prototype implementation of our method yields up to 10-fold speedups and uses up to 78% less memory than one of the fastest and most highly tuned implementations of the phylogenetic likelihood function currently available. Our method is generic and can seamlessly be integrated into any phylogenetic likelihood implementation.


2017 ◽  
Vol 6 (3) ◽  
pp. 75
Author(s):  
Tiago V. F. Santana ◽  
Edwin M. M. Ortega ◽  
Gauss M. Cordeiro ◽  
Adriano K. Suzuki

A new regression model based on the exponentiated Weibull with the structure distribution and the structure of the generalized linear model, called the generalized exponentiated Weibull linear model (GEWLM), is proposed. The GEWLM is composed by three important structural parts: the random component, characterized by the distribution of the response variable; the systematic component, which includes the explanatory variables in the model by means of a linear structure; and a link function, which connects the systematic and random parts of the model. Explicit expressions for the logarithm of the likelihood function, score vector and observed and expected information matrices are presented. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. To detect influential observations in the new model, we use diagnostic measures based on the local influence and Bayesian case influence diagnostics. Also, we show that the estimates of the GEWLM are  robust to deal with the presence of outliers in the data. Additionally, to check whether the model supports its assumptions, to detect atypical observations and to verify the goodness-of-fit of the regression model, we define residuals based on the quantile function, and perform a Monte Carlo simulation study to construct confidence bands from the generated envelopes. We apply the new model to a dataset from the insurance area.


Author(s):  
Alwin Förster ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek

Abstract The present article addresses the vibrational behaviour of bladed disk assemblies with nonlinear shroud coupling under random excitation. In order to increase the service life and safety of turbine blades, intense calculations are carried out to predict the vibrational behaviour. The use of friction dampers for energy dissipation and suppression of large amplitudes makes the mechanical system nonlinear, which complicates the calculations. Depending on the stage, different types of excitation can occur in a turbine, from clearly defined deterministic to random excitation. So far, the latter problem has only been dealt with to a limited extent in the literature on turbomachinery. Nevertheless, there are in general different approaches and methods to address this problem most of which are strongly restricted with regard to the number of degrees of freedom. The focus of this paper is the application of an equivalent linearization method to calculate the stochastic response of an academic model of a bladed disk assembly under random excitation. The nonlinear contact is modelled both with an elastic Coulomb-slider and a Bouc-Wen formulation to reproduce the hysteretic character of a friction nonlinearity occurring in the presence of a friction damper. Both the excitation and the response are limited to mean-free, stationary stochastic processes, which means that the stochastic moments, do not change over time. Unlike previous papers on this topic, the calculations are performed on a full bladed disk assembly in which each segment is approximated with several degrees of freedom.


Author(s):  
Byeng D. Youn ◽  
Byung C. Jung ◽  
Zhimin Xi ◽  
Sang Bum Kim

As the role of predictive models has increased, the fidelity of computational results has been of great concern to engineering decision makers. Often our limited understanding of complex systems leads to building inappropriate predictive models. To address a growing concern about the fidelity of the predictive models, this paper proposes a hierarchical model validation procedure with two validation activities: (1) validation planning (top-down) and (2) validation execution (bottom-up). In the validation planning, engineers define either the physics-of-failure (PoF) mechanisms or the system performances of interest. Then, the engineering system is decomposed into subsystems or components of which computer models are partially valid in terms of PoF mechanisms or system performances of interest. Validation planning will identify vital tests and predictive models along with both known and unknown model parameter(s). The validation execution takes a bottom-up approach, improving the fidelity of the computer model at any hierarchical level using a statistical calibration technique. This technique compares the observed test results with the predicted results from the computer model. A likelihood function is used for the comparison metric. In the statistical calibration, an optimization technique is employed to maximize the likelihood function while determining the unknown model parameters. As the predictive model at a lower hierarchy level becomes valid, the valid model is fused into a model at a higher hierarchy level. The validation execution is then continued for the model at the higher hierarchy level. A cellular phone is used to demonstrate the hierarchical validation of predictive models presented in this paper.


Author(s):  
Yanwen Xu ◽  
Pingfeng Wang

Abstract The Gaussian Process (GP) model has become one of the most popular methods to develop computationally efficient surrogate models in many engineering design applications, including simulation-based design optimization and uncertainty analysis. When more observations are used for high dimensional problems, estimating the best model parameters of Gaussian Process model is still an essential yet challenging task due to considerable computation cost. One of the most commonly used methods to estimate model parameters is Maximum Likelihood Estimation (MLE). A common bottleneck arising in MLE is computing a log determinant and inverse over a large positive definite matrix. In this paper, a comparison of five commonly used gradient based and non-gradient based optimizers including Sequential Quadratic Programming (SQP), Quasi-Newton method, Interior Point method, Trust Region method and Pattern Line Search for likelihood function optimization of high dimension GP surrogate modeling problem is conducted. The comparison has been focused on the accuracy of estimation, the efficiency of computation and robustness of the method for different types of Kernel functions.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3197 ◽  
Author(s):  
Zhouquan Feng ◽  
Yang Lin ◽  
Wenzan Wang ◽  
Xugang Hua ◽  
Zhengqing Chen

A novel probabilistic approach for model updating based on approximate Bayesian computation with subset simulation (ABC-SubSim) is proposed for damage assessment of structures using modal data. The ABC-SubSim is a likelihood-free Bayesian approach in which the explicit expression of likelihood function is avoided and the posterior samples of model parameters are obtained using the technique of subset simulation. The novel contributions of this paper are on three fronts: one is the introduction of some new stopping criteria to find an appropriate tolerance level for the metric used in the ABC-SubSim; the second one is the employment of a hybrid optimization scheme to find finer optimal values for the model parameters; and the last one is the adoption of an iterative approach to determine the optimal weighting factors related to the residuals of modal frequency and mode shape in the metric. The effectiveness of this approach is demonstrated using three illustrative examples.


Sign in / Sign up

Export Citation Format

Share Document