scholarly journals Analysis of Shear Stress and Rutting Performance of Semirigid Base Asphalt Pavement on Steep Longitudinal Slope

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiafu Guo ◽  
Song Yang ◽  
Yongchao Sun ◽  
Zhensheng Chao ◽  
Ruikang Yang ◽  
...  

Rutting is the most common distress of the asphalt pavement with a semirigid base, mainly when located on a steep longitudinal slope. Previous studies have shown that shear stress is the leading cause of rutting. Therefore, it is essential to analyze the distribution characteristics of shear stress to evaluate pavement rutting performance. Firstly, the truck speed was measured at different locations on the steep longitudinal slope section. Then, the calculation method of shear stress was improved based on the method of “systematic clustering.” The distribution characteristics of shear stress were studied under the different gradients, slope lengths, horizontal forces, and interlayer bond conditions. Finally, the rutting prediction model was used to evaluate the rutting performance of the steep longitudinal slope section. The results show two critical parameters of a steep longitudinal slope: gradient and slope length can be quantified by establishing the relationship between truck speed and those parameters. The improved shear stress calculation method can correspond well with the layer where maximum rutting occurs. Gradients and slope lengths have little effect on shear stresses, while horizontal forces and interlayer bond conditions significantly change the shear stress distribution characteristics within the pavement. For the steep longitudinal slope sections, the rutting prediction model should consider the truck speed separately. With increasing gradient and slope length, the rutting increases the fastest in the middle layer. For sections with horizontal forces and poor interlayer bonding, the layers with the highest rutting accumulation are the upper layer and the lower layer, respectively.

2012 ◽  
Vol 178-181 ◽  
pp. 1601-1604
Author(s):  
Lian Yu Wei ◽  
Fei Gao ◽  
Shi Bin Ma ◽  
Qing Zhou Wang

Based on the overhaul structure of actual asphalt pavement, establishes the finite element model and analyses the shear stress in the state of overload, longitudinal slope and contact coefficient. The result is that the load and the gradient of longitudinal slope larger, the influence of rutting more seriously. The growth of shear stress is larger which brought by adding load on steep longitudinal slope than that of adding on longitudinal slope. The contact coefficient of interlayer α larger the maximum shear stress larger, on the contrary, the contact coefficient of interlayer α smaller the maximum shear stress smaller.


2011 ◽  
Vol 243-249 ◽  
pp. 4172-4177
Author(s):  
Bao Chen ◽  
Xuan Cang Wang ◽  
Ke Mu

Asphalt Pavement was damaged more seriously in longitudinal Gradient than common segment because of its special load bearing conditions. This paper establishes a 3D Visco-elasto-plastic Finite Element to analyses the stress respond of pavement structure, calculating the discipline of stress behaviors under different gradient. Burgers model was used to study the factors which can influence on tracking, for example longitudinal Gradient, speeds and frequency of axle load. Result of calculation show that the maximum shear stress grows as the gradient increases. Rutting of pavement was small before a certain number of axle loads, but when beyond the certain number, the rutting incense notably, and the slower speed the vehicle has, the deeper tracking the pavement responds.


2021 ◽  
Author(s):  
Kun Wang ◽  
Mingjun Wu ◽  
Peng Hu ◽  
Baoqun Wang

In order to study the mechanism of water damage of an asphalt pavement, the FLAC3D program was adopted to model and analyze the mechanical response of a saturated asphalt pavement under instantaneous vehicle load. The results show that the horizontal stress, vertical stress and shear stress of an asphalt concrete pavement increase with the increase of instantaneous load. The surfaces of asphalt pavement structural layers are most vulnerable to damage. The horizontal stress, vertical stress and shear stress decrease sharply with the instantaneous dynamic load decreasing to zero. The horizontal stress reaches maximum value at the interface between the base and the large stone porous mixture (LSPM) layer, while the maximum vertical and shear stresses occur on the surface layer of the saturated asphalt pavement. The deformation decreases almost linearly from the surface of the asphalt pavement to the subgrade, and the pore water pressure was little influenced by the transient load.


Author(s):  
Wang Xiao ◽  
Chen Hui ◽  
Ni Dong ◽  
Zhao Jing

Abstract A hydrodynamic model is developed for rainfall runoff on asphalt pavement using two-dimensional shallow water equations. A simple yet precise expression is presented to compute flow velocity in order to alleviate the problems associated with numerical instabilities due to small water depths of thin sheet flow. The developed model performed well against measured data and numerical results in two segments. Then, the model is applied to study the influence of highway horizontal alignment, drainage manner, rainfall pattern, surface roughness and geometric parameters on pavement runoff. The results demonstrate that: (i) the influence of highway horizontal alignment on pavement runoff is nonsignificant, while that of drainage manner and the pavement surface roughness is significant. Great differences are observed in flow depth under concentrated drainage and overflow drainage conditions, especially in the area beyond 6 m away from the highway center axis; (ii) remarkable differences in maximum flow depth and peak runoff are presented under uneven and even rainfall conditions, while no great differences are found under three uneven rainfall conditions (front type, center front type and back front type); (iii) the sensitivity of the geometric parameters to the maximum flow depth from strong to weak is cross slope, width, slope length, and longitudinal slope under overflow drainage condition; while that is width, slope length, longitudinal slope and cross slope under concentrated drainage condition.


1986 ◽  
Vol 14 (4) ◽  
pp. 264-291
Author(s):  
K. L. Oblizajek ◽  
A. G. Veith

Abstract Treadwear is explained by specific mechanical properties and actions of tires. Rubber shear stresses in the contact zone between the tire and the road become large at large slip angles. When normal stresses are insufficient to prevent sliding at the rear of the footprint, wear occurs at a rate that depends on test severity. Two experimental approaches are described to relate treadwear to tire characteristics. The first uses transducers imbedded in a simulated road surface to obtain direct measurements of contact stresses on the loaded, freely-rolling, steered tires. The second approach is developed with the aid of a simple carcass, tread-band, tread-rubber tire model. Various tire structural configurations; characterized by carcass spring rate, edgewise flexural band stiffness, and tread rubber shear stiffness; are simulated and lateral shear stress response in the contact zone is determined. Tires featuring high band stiffness and low carcass stiffness generate lower lateral shear stress levels. Furthermore, coupling of tread-rubber stiffness and band flexural rigidity are important in determining level of shear stresses. Laboratory measurements with the described apparatus produced values of tread-band bending and carcass lateral stiffness for several tire constructions. Good correlation is shown between treadwear and a broad range of tire stiffness and test course severities.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


2020 ◽  
Vol 86 (2) ◽  
pp. 44-53
Author(s):  
Yu. I. Dudarkov ◽  
M. V. Limonin

An engineering approach to estimation of the transverse shear stresses in layered composites is developed. The technique is based on the well-known D. I. Zhuravsky equation for shear stresses in an isotropic beam upon transverse bending. In general, application of this equation to a composite beam is incorrect due to the heterogeneity of the composite structure. According to the proposed method, at the first stage of its implementation, a transition to the equivalent model of a homogeneous beam is made, for which the Zhuravsky formula is valid. The transition is carried out by changing the shape of the cross section of the beam, provided that the bending stiffness and generalized elastic modulus remain the same. The calculated shear stresses in the equivalent beam are then converted to the stress values in the original composite beam from the equilibrium condition. The main equations and definitions of the method as well as the analytical equation for estimation of the transverse shear stress in a composite beam are presented. The method is verified by comparing the analytical solution and the results of the numerical solution of the problem by finite element method (FEM). It is shown that laminate stacking sequence has a significant impact both on the character and on the value of the transverse shear stress distribution. The limits of the applicability of the developed technique attributed to the conditions of the validity of the hypothesis of straight normal are considered. It is noted that under this hypothesis the shear stresses do not depend on the layer shear modulus, which explains the absence of this parameter in the obtained equation. The classical theory of laminate composites is based on the similar assumptions, which gives ground to use this equation for an approximate estimation of the transverse shear stresses in in a layered composite package.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Babak Lashkar-Ara ◽  
Niloofar Kalantari ◽  
Zohreh Sheikh Khozani ◽  
Amir Mosavi

One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Semra Zuhal Birol ◽  
Rana Fucucuoglu ◽  
Sertac Cadirci ◽  
Ayca Sayi-Yazgan ◽  
Levent Trabzon

AbstractAtherosclerosis is a long-term disease process of the vascular system that is characterized by the formation of atherosclerotic plaques, which are inflammatory regions on medium and large-sized arteries. There are many factors contributing to plaque formation, such as changes in shear stress levels, rupture of endothelial cells, accumulation of lipids, and recruitment of leukocytes. Shear stress is one of the main factors that regulates the homeostasis of the circulatory system; therefore, sudden and chronic changes in shear stress may cause severe pathological conditions. In this study, microfluidic channels with cavitations were designed to mimic the shape of the atherosclerotic blood vessel, where the shear stress and pressure difference depend on design of the microchannels. Changes in the inflammatory-related molecules ICAM-1 and IL-8 were investigated in THP-1 cells in response to applied shear stresses in an continuous cycling system through microfluidic channels with periodic cavitations. ICAM-1 mRNA expression and IL-8 release were analyzed by qRT-PCR and ELISA, respectively. Additionally, the adhesion behavior of sheared THP-1 cells to endothelial cells was examined by fluorescence microscopy. The results showed that 15 Pa shear stress significantly increases expression of ICAM-1 gene and IL-8 release in THP-1 cells, whereas it decreases the adhesion between THP-1 cells and endothelial cells.


2021 ◽  
Vol 2 (1) ◽  
pp. 174-194
Author(s):  
Luís Bernardo ◽  
Saffana Sadieh

In previous studies, a smeared truss model based on a refinement of the rotating-angle softened truss model (RA-STM) was proposed to predict the full response of structural concrete panel elements under in-plane monotonic loading. This model, called the “efficient RA-STM procedure”, was validated against the experimental results of reinforced and prestressed concrete panels, steel fiber concrete panels, and reinforced concrete panels externally strengthened with fiber-reinforced polymers. The model incorporates equilibrium and compatibility equations, as well as appropriate smeared constitutive laws of the materials. Besides, it incorporates an efficient algorithm for the calculation procedure to compute the solution points without using the classical trial-and-error technique, providing high numerical efficiency and stability. In this study, the efficient RA-STM procedure is adapted and checked against some experimental data related to reinforced concrete (RC) panels tested under in-plane cyclic shear until failure and found in the literature. Being a monotonic model, the predictions from the model are compared with the experimental envelopes of the hysteretic shear stress–shear strain loops. It is shown that the predictions for the shape (at least until the peak load is reached) and for key shear stresses (namely, cracking, yielding, and maximum shear stresses) of the envelope shear stress–shear strain curves are in reasonably good agreement with the experimental ones. From the obtained results, the efficient RA-STM procedure can be considered as a reliable model to predict some important features of the response of RC panels under cyclic shear, at least for a precheck analysis or predesign.


Sign in / Sign up

Export Citation Format

Share Document