scholarly journals Effects of Re on Vacancy Mobility in a Ni-Re System: An Atomistic Study

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nuttapong La-ongtup ◽  
Suttipong Wannapaiboon ◽  
Piyanut Pinyou ◽  
Worawat Wattanathana ◽  
Yuranan Hanlumyuang

The performance of modern Ni-based superalloys depends critically on the kinetic transport of point defects around solutes such as rhenium. Here, we use atomistic calculations to study the diffusion of vacancy in the low-concentration limit, using the crystalline fcc-framework nickel as a model. On-the-fly kinetic Monte Carlo is combined with an efficient energy-valley search to find energies of saddle points, based on energetics from the embedded atom method. With this technique, we compute the local energy barriers to vacancy hopping, tracer diffusivities, and migration energies of the low-concentration limit of Ni-Re alloys. It was estimated that the computed diffusion rates are comparable to the reported rates. The presence of Re atoms affects the difference between the energy of the saddle point and the initial energy of point defect hopping. In pure Ni, this difference is about 1 eV, while at 9.66 mol% Re, the value is raised to about 1.5 eV. The vacancy migration energy of vacancy in the 9.66 mol % Re sample is raised above that of pure Ni. Our findings demonstrate that even in the low-concentration limit, Re solute atoms continue to play a crucial role in the mobility of the vacancies.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jui-Chih Chang ◽  
Yi-Chun Chao ◽  
Huei-Shin Chang ◽  
Yu-Ling Wu ◽  
Hui-Ju Chang ◽  
...  

AbstractThe feasibility of delivering mitochondria intranasally so as to bypass the blood–brain barrier in treating Parkinson's disease (PD), was evaluated in unilaterally 6-OHDA-lesioned rats. Intranasal infusion of allogeneic mitochondria conjugated with Pep-1 (P-Mito) or unconjugated (Mito) was performed once a week on the ipsilateral sides of lesioned brains for three months. A significant improvement of rotational and locomotor behaviors in PD rats was observed in both mitochondrial groups, compared to sham or Pep-1-only groups. Dopaminergic (DA) neuron survival and recovery > 60% occurred in lesions of the substantia nigra (SN) and striatum in Mito and P-Mito rats. The treatment effect was stronger in the P-Mito group than the Mito group, but the difference was insignificant. This recovery was associated with restoration of mitochondrial function and attenuation of oxidative damage in lesioned SN. Notably, P-Mito suppressed plasma levels of inflammatory cytokines. Mitochondria penetrated the accessory olfactory bulb and doublecortin-positive neurons of the rostral migratory stream (RMS) on the ipsilateral sides of lesions and were expressed in striatal, but not SN DA neurons, of both cerebral hemispheres, evidently via commissural fibers. This study shows promise for intranasal delivery of mitochondria, confirming mitochondrial internalization and migration via RMS neurons in the olfactory bulb for PD therapy.


1990 ◽  
Vol 183 ◽  
Author(s):  
M. J. Mills ◽  
M. S. Daw

AbstractThe coupling of HRTEM with atomistic calculations is described for the study of grain boundaries and dislocations in aluminum. HRTEM images of the Σ9 (221) [110] grain boundary are compared with molecular statics calculations using both the Embedded Atom Method (EAM) and two pair potentials. Comparison between observed and simulated images are shown to serve as a stringent test of the theoretical methods. Atomistic calculations can in turn provide threedimensional information about the defect structure. Using the EAM, it is also possible to account for the effects of thin foil geometries on the minimim energy configuration of defects. While these effects are found to be minimal for grain boundary structures, the influence of the thin-foil geometries on the core structure of the 60° dislocation in aluminum is discussed. These comparisons indicate that the EAM function provides a good description of grain boundary structures, but fails to reproduce the observed dislocation core structure due to a low predicted value of the intrinsic stacking fault energy (SFE) on the (111). In contrast, the pair potentials used in this study provide reasonable SFE values, but appear to be less accurate for the prediction of the Σ9 (221) [110] grain boundary structures.


2014 ◽  
Vol 790-791 ◽  
pp. 97-102
Author(s):  
Zoltán Erdélyi ◽  
Zoltán Balogh ◽  
Gabor L. Katona ◽  
Dezső L. Beke

The critical nucleus size—above which nuclei grow, below dissolve—during diffusion controlled nucleation in binary solid-solid phase transformation process is calculated using kinetic Monte Carlo (KMC). If atomic jumps are slower in an A-rich nucleus than in the embedding B-rich matrix, the nucleus traps the A atoms approaching its surface. It doesn’t have enough time to eject A atoms before new ones arrive, even if it would be favourable thermodynamically. In this case the critical nucleus size can be even by an order of magnitude smaller than expected from equilibrium thermodynamics or without trapping. These results were published in [Z. Erdélyi et al., Acta Mater. 58 (2010) 5639]. In a recent paper M. Leitner [M. Leitner, Acta Mater. 60 (2012) 6709] has questioned our results based on the arguments that his simulations led to different results, but he could not point out the reason for the difference. In this paper we summarize our original results and on the basis of recent KMC and kinetic mean field (KMF) simulations we show that Leitner’s conclusions are not valid and we confirm again our original results.


1994 ◽  
Vol 364 ◽  
Author(s):  
M. Ludwig ◽  
P. Gumbsch

AbstractThe atomistic processes during fracture of NiAl are studied using a new embedded atom (EAM) potential to describe the region near the crack tip. To provide the atomistically modeled crack tip region with realistic boundary conditions, a coupled finite element - atomistic (FEAt) technique [1] is employed. In agreement with experimental observations, perfectly brittle cleavage is observed for the (110) crack plane. In contrast, cracks on the (100) plane either follow a zig-zag path on (110) planes, or emit dislocations. Dislocation generation is studied in more detail under mixed mode I/II loading conditions.


1998 ◽  
Vol 08 (04) ◽  
pp. 623-643 ◽  
Author(s):  
SANJA MARUŠIĆ

A fluid flow through an ∊-periodic array of obstacles distributed on a hypersurface (filter) is considered. The study of the asymptotic behavior as ∊→0 for two critical sizes of obstacles ∊ and ∊2 gives two different laws describing a global flow. In this paper we study the case of an intermediate obstacle size ∊β, 1 < β < 2 and we prove the continuity of the filtration law in the low-volume fraction limit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Li ◽  
A. Hallil ◽  
A. Metsue ◽  
A. Oudriss ◽  
J. Bouhattate ◽  
...  

AbstractHydrogen-grain-boundaries interactions and their role in intergranular fracture are well accepted as one of the key features in understanding hydrogen embrittlement in a large variety of common engineer situations. These interactions implicate some fundamental processes classified as segregation, trapping and diffusion of the solute which can be studied as a function of grain boundary configuration. In the present study, we carried out an extensive analysis of four grain-boundaries based on the complementary of atomistic calculations and experimental data. We demonstrate that elastic deformation has an important contribution on the segregation energy which cannot be simply reduced to a volume change and need to consider the deviatoric part of strain. Additionally, some significant configurations of the segregation energy depend on the long-range elastic distortion and allows to rationalize the elastic contribution in three terms. By investigating the different energy barriers involved to reach all the segregation sites, the antagonist impact of grain boundaries on hydrogen diffusion and trapping process was elucidated. The segregation energy and migration energy are two fundamental parameters in order to classify the grain-boundaries as a trapping location or short circuit for diffusion.


1965 ◽  
Vol s3-106 (75) ◽  
pp. 229-240
Author(s):  
R. T. SIMS

Hooded rats were given an intraperitoneal injection of 3H-tyrosine, and killed in pairs 10 min, 30 min, 12 h, 36 h, 7 days, and 30 days later. A piece of skin with white growing hair, and the tongue, were taken from each animal and radioautographs were prepared. Silver grains were counted over whole nuclei and whole mitotic figures of the germinal cells and whole nuclei of differentiating cells of both tissues. It was found that the interphase nuclei have significantly more silver grains over them than the chromosomes at all stages of mitosis and there are virtually no grains over metaphase, anaphase, and early telophase chromosomes in both tissues of all the animals killed up to 36 h after the injection. The difference between the grain counts over the interphase nuclei and the chromosomes of dividing cells is at least 20-fold at 30 min in the hair matrix, at least 5-fold at 30 min in the tongue and at 36 h in both tissues. It was established that the differences observed between the radioactivities of the nuclei and chromosomes of mitotic figures are real from estimates of: the radioactivity of the cell cytoplasm, volumes of the metaphase chromosomes and interphase nuclei within 1µ of the photographic emulsion, and the volumes of cytoplasm separating the photographic emulsion and these structures. No protein synthesis was demonstrable in the chromosomes during metaphase, anaphase, and early telophase. Nuclear proteins leave the chromosomes during prophase and prometaphase and return to the nucleus during late telophase. The cells in the matrix and upper bulb of the growing hair follicle and those in the germinal, prickle, and granular cell layers of the tongue are in different functional states; 30 min after injection of 3H-tyrosine they have different amounts of it in their nuclear proteins. It is suggested that the amount incorporated into each nucleus is related to the rate at which proteins are being synthesized by the cell.


Author(s):  
Vasily Bulatov ◽  
Wei Cai

The PN model discussed in the preceding chapter is a continuum approach that requires some atomistic input to account for non-linear interactions in the dislocation core. In this chapter, we introduce yet another continuum model that uses atomistic input for a different purpose. The kinetic Monte Carlo (kMC) model does not consider any details of the core structure but instead focuses on dislocation motion on length and time scales far greater than those of the atomistic simulations. The model is especially effective for diamond-cubic semiconductors and other materials in which dislocation motion is too slow to be observed on the time scale of molecular dynamics simulations. The key idea of the kMC approach is to treat dislocation motion as a stochastic sequence of discrete rare events whose mechanisms and rates are computed within the framework of the transition state theory. Built around its unit mechanisms, the kMC model simulates dislocation motion and predicts dislocation velocity as a function of stress and temperature. This data then can be used to construct accurate mobility functions for dislocation dynamics simulations on still larger scales (Chapter 10). In this sense, kMC serves as a link between atomistic models and coarse-grained continuum models of dislocations. The kMC approach is most useful in situations where the system evolves through a stochastic sequence of events with only a few possible event types. The method has been used in a wide variety of applications other than dislocations. For example, the growth of solid thin films from vapor or in solution is known to proceed through attachment and diffusion of adatoms deposited on the surface. Based on a finite set of unit mechanisms of the motion of adatoms, kMC models accurately describe the kinetics of growth and the resulting morphology evolution of the epitaxial films [95, 96, 97]. Similar kMC models have been applied to dislocation motion in crystals with high lattice resistance, such as silicon. In these materials, dislocations consist of long straight segments interspersed with atomic-sized kinks, depicted schematically in Fig. 9.1(a) as short vertical segments. As was explained in Section 1.3, dislocation motion proceeds through nucleation and migration of kink pairs and can be described well by a kMC model.


Author(s):  
Geoff Gilbert ◽  
Anna Magdalena Rüsch

This chapter explores the definition of refugee status in international law, its scope and limitations and consequent protection gaps for those forcibly displaced, including internally displaced persons (IDPs), who have crossed no international border. There is no equivalent definition for migrants, but like refugees, asylum-seekers, and IDPs, international human rights law provides a framework for their protection. The chapter explains the difference between refugee status and asylum, focusing on non-refoulement in international law. It discusses the rights that are guaranteed during displacement, particularly those pertaining to detention and humanitarian relief. Given that refugee status is intended to be temporary, the final section looks at cessation and durable solutions, either following voluntary return, through local integration, or resettlement in some third State.


2019 ◽  
Vol 10 (22) ◽  
pp. 2781-2791 ◽  
Author(s):  
Federica Cavalli ◽  
Lies De Keer ◽  
Birgit Huber ◽  
Paul H. M. Van Steenberge ◽  
Dagmar R. D'hooge ◽  
...  

A detailed kinetic study on the para-fluoro-thiol reaction (PFTR) using experimental analysis and kinetic Monte Carlo modeling is introduced, covering the difference in reactivity of a selected variety of structurally different thiols, uniquely including polymeric thiols.


Sign in / Sign up

Export Citation Format

Share Document