scholarly journals MicroRNA-137-3p Improves Nonalcoholic Fatty Liver Disease through Activating AMPKα

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuanjie Yu ◽  
Chunping He ◽  
Shiyun Tan ◽  
Mengjun Huang ◽  
Yitian Guo ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide and can develop to nonalcoholic steatohepatitis and later hepatic cirrhosis with a high prevalence to hepatocellular carcinoma. Oxidative stress and chronic hepatic inflammation are implicated in the pathogenesis of NAFLD. MicroRNA-137-3p (miR-137-3p) are associated with oxidative stress and inflammation; however, its role and mechanism in NAFLD remain unclear. Mice were fed with a high-fat diet (HFD) for 24 weeks to establish the NAFLD model. To overexpress or suppress hepatic miR-137-3p expression, mice were intraperitoneally injected with the agomir, antagomir, or respective controls of miR-137-3p at a dose of 100 mg/kg weekly for 6 consecutive weeks before the mice were sacrificed. To validate the involvement of AMP-activated protein kinase alpha (AMPKα) or cAMP-specific phosphodiesterase 4D (PDE4D), HFD mice were intraperitoneally injected with 20 mg/kg compound C or 0.5 mg/kg rolipram every other day for 8 consecutive weeks before the mice were sacrificed. Hepatic miR-137-3p expression was significantly decreased in mice upon HFD stimulation. miR-137-3p agomir alleviated, while miR-137-3p antagomir facilitated HFD-induced oxidative stress, inflammation, and hepatic dysfunction in mice. Mechanistically, we revealed that miR-137-3p is directly bound to the 3 ′ -untranslated region of PDE4D and subsequently increased hepatic cAMP level and protein kinase A activity, thereby activating the downstream AMPKα pathway. In summary, miR-137-3p improves NAFLD through activating AMPKα and it is a promising therapeutic candidate to treat NAFLD.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Po-Jung Wu ◽  
Jin-Bor Chen ◽  
Wen-Chin Lee ◽  
Hwee-Yeong Ng ◽  
Shu-Ching Lien ◽  
...  

Introduction. Nonalcoholic fatty liver disease (NAFLD) is becoming more common around the world and it may progress to cirrhosis and liver failure, increasing mortality risk. In hemodialysis (HD) patients, NAFLD may be a novel risk factor for their high cardiovascular mortality. Heightened oxidative stress is highly prevalent in HD patients. However, the relationship between oxidative stress and NAFLD in HD patients is not well defined.Methods. We studied seventy-one stable nondiabetic HD patients. Nineteen patients had the diagnosis of NAFLD by ultrasonography. Blood levels of oxidative stress markers were measured in each patient, including thiobarbituric acid reactive substances (TBARS), free thiols, superoxide dismutase (SOD) activities, and glutathione peroxidase (GPx) activity. The copy numbers of mitochondrial DNA (mtDNA) in peripheral leukocytes were also determined. Demographic, biochemistry, and hemogram data were recorded. The two groups of patients were compared in order to determine the factors associated with NAFLD in HD patients.Findings. Compared to those without NAFLD, nondiabetic HD patients with NAFLD had significantly higher mtDNA copy number and GPx levels. The two groups did not differ significantly in dialysis adequacy, hemoglobin, serum calcium, phosphorus, albumin, liver function tests, or lipid profiles. Regression analysis confirmed mtDNA copy numbers and GPx levels as two independent factors associated with NAFLD. Compared to those with polysulfone, patients dialyzed with cellulose membrane have significantly higher levels of TBARS. However, patients with or without NAFLD did not differ in their use of either dialysis membrane.Discussion. Oxidative stress (represented by antioxidant defense, GPx) and mitochondrial DNA copy numbers are independently associated with fatty liver disease in nondiabetic HD patients. The diagnostic and therapeutic implications of this key observation warrant further exploration.


2015 ◽  
Vol 149 (3) ◽  
pp. 623-634.e8 ◽  
Author(s):  
Stavra A. Xanthakos ◽  
Todd M. Jenkins ◽  
David E. Kleiner ◽  
Tawny W. Boyce ◽  
Reena Mourya ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Maria Luíza R. P. Lima ◽  
Laura H. R. Leite ◽  
Carolina R. Gioda ◽  
Fabíola O. P. Leme ◽  
Claudia A. Couto ◽  
...  

The pathogenesis of nonalcoholic fatty liver disease (NAFLD) is not fully understood, and experimental models are an alternative to study this issue. We investigated the effects of a simple carbohydrate-rich diet on the development of obesity-related NAFLD and the impact of physical training on the metabolic abnormalities associated with this disorder. Sixty Wistar rats were randomly separated into experimental and control groups, which were fed with sucrose-enriched (18% simple carbohydrates) and standard diet, respectively. At the end of each experimental period (5, 10, 20, and 30 weeks), 6 animals from each group were sacrificed for blood tests and liver histology and immunohistochemistry. From weeks 25 to 30, 6 animals from each group underwent physical training. The experimental group animals developed obesity and NAFLD, characterized histopathologically by steatosis and hepatocellular ballooning, clinically by increased thoracic circumference and body mass index associated with hyperleptinemia, and metabolically by hyperglycemia, hyperinsulinemia, hypertriglyceridemia, increased levels of very low-density lipoprotein- (VLDL-) cholesterol, depletion of the antioxidants liver enzymes superoxide dismutase and catalase, and increased hepatic levels of malondialdehyde, an oxidative stress marker. Rats that underwent physical training showed increased high-density lipoprotein- (HDL-) cholesterol levels. In conclusion, a sucrose-rich diet induced obesity, insulin resistance, oxidative stress, and NAFLD in rats.


Sign in / Sign up

Export Citation Format

Share Document