scholarly journals Computational Study on Three-Dimensional Convective Casson Nanofluid Flow past a Stretching Sheet with Arrhenius Activation Energy and Exponential Heat Source Effects

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
P. Ragupathi ◽  
S. Saranya ◽  
H.V.R. Mittal ◽  
Qasem M. Al-Mdallal

The effective applications of Casson fluid in drilling processes, biological treatments, food processing, and bio-engineering activities have caught the interest of a wide range of researchers. The suitable knowledge of heat transfer via non-Newtonian fluid is essential for the achievement of best quality products in industry. Thus, the three-dimensional Casson nanofluid flow over a stretching sheet with Arrhenius activation energy and exponential heat source effects is investigated in this paper using a computational process based on iterative power series (IPS) method. To provide useful insights into the physical and dynamic examinations of this topic, convective heat and convective mass boundary conditions are used. The developed model of nonlinear partial differential equations (PDEs) has been transformed into ordinary differential equations (ODEs) using similarity transformations. The numerical solution of the transformed ODEs is obtained by employing the IPS technique combined with shooting iteration approach. The results of this study are validated with the previous studies, and excellent agreements have been obtained. The behavior of various capable physical parameters is analyzed. It is observed that the thermal and concentration fields show an enhancement with respect to the exponential heat source parameter and thermal and concentration Biot numbers. Further, the Arrhenius activation energy parameter has shown a significant effect on the concentration field.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Soraya Torkaman ◽  
Ghasem Barid Loghmani ◽  
Mohammad Heydari ◽  
Abdul-Majid Wazwaz

Purpose The purpose of this paper is to investigate a three-dimensional boundary layer flow with considering heat and mass transfer on a nonlinearly stretching sheet by using a novel operational-matrix-based method. Design/methodology/approach The partial differential equations that governing the problem are converted into the system of nonlinear ordinary differential equations (ODEs) with considering suitable similarity transformations. A direct numerical method based on the operational matrices of integration and product for the linear barycentric rational basic functions is used to solve the nonlinear system of ODEs. Findings Graphical and tabular results are provided to illustrate the effect of various parameters involved in the problem on the velocity profiles, temperature distribution, nanoparticle volume fraction, Nusselt and Sherwood number and skin friction coefficient. Comparison between the obtained results, numerical results based on the Maple's dsolve (type = numeric) command and previous existing results affirms the efficiency and accuracy of the proposed method. Originality/value The motivation of the present study is to provide an effective computational method based on the operational matrices of the barycentric cardinal functions for solving the problem of three-dimensional nanofluid flow with heat and mass transfer. The convergence analysis of the presented scheme is discussed. The benefit of the proposed method (PM) is that, without using any collocation points, the governing equations are converted to the system of algebraic equations.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1395
Author(s):  
Hammad Alotaibi ◽  
Mohamed R. Eid

This paper discusses the Darcy–Forchheimer three dimensional (3D) flow of a permeable nanofluid through a convectively heated porous extending surface under the influences of the magnetic field and nonlinear radiation. The higher-order chemical reactions with activation energy and heat source (sink) impacts are considered. We integrate the nanofluid model by using Brownian diffusion and thermophoresis. To convert PDEs (partial differential equations) into non-linear ODEs (ordinary differential equations), an effective, self-similar transformation is used. With the fourth–fifth order Runge–Kutta–Fehlberg (RKF45) approach using the shooting technique, the consequent differential system set is numerically solved. The influence of dimensionless parameters on velocity, temperature, and nanoparticle volume fraction profiles is revealed via graphs. Results of nanofluid flow and heat as well as the convective heat transport coefficient, drag force coefficient, and Nusselt and Sherwood numbers under the impact of the studied parameters are discussed and presented through graphs and tables. Numerical simulations show that the increment in activation energy and the order of the chemical reaction boosts the concentration, and the reverse happens with thermal radiation. Applications of such attractive nanofluids include plastic and rubber sheet production, oil production, metalworking processes such as hot rolling, water in reservoirs, melt spinning as a metal forming technique, elastic polymer substances, heat exchangers, emollient production, paints, catalytic reactors, and glass fiber production.


2018 ◽  
Vol 8 (5) ◽  
pp. 1085-1092 ◽  
Author(s):  
D. Harish Babu ◽  
K. A. Ajmath ◽  
B. Venkateswarlu ◽  
P. V. Satya Narayana

2018 ◽  
Vol 14 (5) ◽  
pp. 1101-1114 ◽  
Author(s):  
K. Suneetha ◽  
S.M. Ibrahim ◽  
G.V. Ramana Reddy

Purpose The purpose of this paper is to investigate the steady 2D buoyancy effects on MHD flow over a permeable stretching sheet through porous medium in the presence of suction/injection. Design/methodology/approach Similarity transformations are employed to transform the governing partial differential equations into ordinary differential equations. The transformed equations are then solved numerically by a shooting technique. Findings The working fluid is examined for several sundry parameters graphically and in tabular form. It is observed that with an increase in magnetic field and permeability of porous parameter, velocity profile decreases while temperature and concentration enhances. Stretching sheet parameter reduces velocity, temperature and concentration, whereas it increases skin friction factor, Nusselt number and Sherwood number. Originality/value Till now no numerical studies are reported on the effects of heat source and thermal radiation on MHD flow over a permeable stretching sheet embedded in porous medium in the presence of chemical reaction.


Sign in / Sign up

Export Citation Format

Share Document