scholarly journals Influence Maximization Algorithm Based on Reverse Reachable Set

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Gengxin Sun ◽  
Chih-Cheng Chen

Most of the existing influence maximization algorithms are not suitable for large-scale social networks due to their high time complexity or limited influence propagation range. Therefore, a D-RIS (dynamic-reverse reachable set) influence maximization algorithm is proposed based on the independent cascade model and combined with the reverse reachable set sampling. Under the premise that the influence propagation function satisfies monotonicity and submodularity, the D-RIS algorithm uses an automatic debugging method to determine the critical value of the number of reverse reachable sets, which not only obtains a better influence propagation range but also greatly reduces the time complexity. The experimental results on the two real datasets of Slashdot and Epinions show that D-RIS algorithm is close to the CELF (cost-effective lazy-forward) algorithm and higher than RIS algorithm, HighDegree algorithm, LIR algorithm, and pBmH (population-based metaheuristics) algorithm in influence propagation range. At the same time, it is significantly better than the CELF algorithm and RIS algorithm in running time, which indicates that D-RIS algorithm is more suitable for large-scale social network.

Author(s):  
Gengxin Sun ◽  
Chih-Cheng Chen

Most of the existing influence maximization algorithms are not suitable for large-scale social networks due to their high time complexity or limited influence propagation range. Therefore, a D-RIS influence maximization algorithm is proposed based on the independent cascade model and combined with the reverse reachable set sampling. Under the premise that the influence propagation function satisfies monotonicity and submodularity, the D-RIS algorithm uses automatic debugging method to determine the critical value of the number of reverse reachable sets, which not only obtains a better influence propagation range, and greatly reduce the time complexity. The experimental results on the two real data sets of Slashdot and Epinions show that D-RIS algorithm is close to the CELF algorithm and higher than RIS algorithm, HighDegree algorithm, LIR algorithm and pBmH algorithm in influence propagation range. At the same time, it is significantly better than the CELF algorithm and RIS algorithm in running time, which indicates that D-RIS algorithm is more suitable for large scale social network.


2002 ◽  
Vol 9 (3) ◽  
pp. 128-132 ◽  
Author(s):  
P.F. Hanrahan ◽  
C.A. D’Este ◽  
S.W. Menzies ◽  
T. Plummer ◽  
P. Hersey

OBJECTIVES: We have previously shown that photographs assist in detection of change in skin lesions and designed the present randomised population based trial to assess the feasibility of photographs as an aid to management of skin cancers in older men. SETTING: 1899 men over fifty, identified from the electoral roll in two regions in New South Wales (NSW), Australia, were invited by mail to participate. METHODS: A total of 973 of 1037 respondents were photographed and randomised into intervention (participants given their photographs) or control groups (photographs withheld by investigators). At one and two years from the time of photography, all participants were advised to see their primary care practitioner for a skin examination. Those in the intervention group were examined with their photographs and those in the control group without their photographs. RESULTS: The results indicated that the practitioners were more likely to leave suspicious lesions in place for follow up observation (37% v 29%) (p=0.006) and less likely to excise benign non pigmented lesions (20 v 32%). There was little difference in excision rates for benign pigmented lesions (21% v 23%). Lesions excised were more likely to be non-melanoma skin cancer (58% v 42%) from patients who had photographs compared to those without photographs (p=0.005). The use of skin photography resulted in a substantial savings due to the reduced excision of benign lesions. CONCLUSIONS: These results suggest that it would be feasible to conduct a large scale randomised trial to evaluate the value of photography in early detection of melanoma and that such a trial could be cost effective due to the reduced excision of benign skin lesions.


2019 ◽  
Vol 65 (8) ◽  
pp. 1042-1050 ◽  
Author(s):  
Sanna Kuusisto ◽  
Michael V Holmes ◽  
Pauli Ohukainen ◽  
Antti J Kangas ◽  
Mari Karsikas ◽  
...  

Abstract BACKGROUND HDL-mediated cholesterol efflux capacity (HDL-CEC) is a functional attribute that may have a protective role in atherogenesis. However, the estimation of HDL-CEC is based on in vitro cell assays that are laborious and hamper large-scale phenotyping. METHODS Here, we present a cost-effective high-throughput nuclear magnetic resonance (NMR) spectroscopy method to estimate HDL-CEC directly from serum. We applied the new method in a population-based study of 7603 individuals including 574 who developed incident coronary heart disease (CHD) during 15 years of follow-up, making this the largest quantitative study for HDL-CEC. RESULTS As estimated by NMR-spectroscopy, a 1-SD higher HDL-CEC was associated with a lower risk of incident CHD (hazards ratio, 0.86; 95%CI, 0.79–0.93, adjusted for traditional risk factors and HDL-C). These findings are consistent with published associations based on in vitro cell assays. CONCLUSIONS These corroborative large-scale findings provide further support for a potential protective role of HDL-CEC in CHD and substantiate this new method and its future applications.


2019 ◽  
Author(s):  
Kyle Konze ◽  
Pieter Bos ◽  
Markus Dahlgren ◽  
Karl Leswing ◽  
Ivan Tubert-Brohman ◽  
...  

We report a new computational technique, PathFinder, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. Coupling PathFinder with active learning and cloud-based free energy calculations allows for large-scale potency predictions of compounds on a timescale that impacts drug discovery. The process is further accelerated by using a combination of population-based statistics and active learning techniques. Using this approach, we rapidly optimized R-groups and core hops for inhibitors of cyclin-dependent kinase 2. We explored greater than 300 thousand ideas and identified 35 ligands with diverse commercially available R-groups and a predicted IC<sub>50</sub> < 100 nM, and four unique cores with a predicted IC<sub>50</sub> < 100 nM. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns.


2019 ◽  
Author(s):  
Kyle Konze ◽  
Pieter Bos ◽  
Markus Dahlgren ◽  
Karl Leswing ◽  
Ivan Tubert-Brohman ◽  
...  

We report a new computational technique, PathFinder, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. Coupling PathFinder with active learning and cloud-based free energy calculations allows for large-scale potency predictions of compounds on a timescale that impacts drug discovery. The process is further accelerated by using a combination of population-based statistics and active learning techniques. Using this approach, we rapidly optimized R-groups and core hops for inhibitors of cyclin-dependent kinase 2. We explored greater than 300 thousand ideas and identified 35 ligands with diverse commercially available R-groups and a predicted IC<sub>50</sub> < 100 nM, and four unique cores with a predicted IC<sub>50</sub> < 100 nM. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns.


Author(s):  
Yan Pan ◽  
Shining Li ◽  
Qianwu Chen ◽  
Nan Zhang ◽  
Tao Cheng ◽  
...  

Stimulated by the dramatical service demand in the logistics industry, logistics trucks employed in last-mile parcel delivery bring critical public concerns, such as heavy cost burden, traffic congestion and air pollution. Unmanned Aerial Vehicles (UAVs) are a promising alternative tool in last-mile delivery, which is however limited by insufficient flight range and load capacity. This paper presents an innovative energy-limited logistics UAV schedule approach using crowdsourced buses. Specifically, when one UAV delivers a parcel, it first lands on a crowdsourced social bus to parcel destination, gets recharged by the wireless recharger deployed on the bus, and then flies from the bus to the parcel destination. This novel approach not only increases the delivery range and load capacity of battery-limited UAVs, but is also much more cost-effective and environment-friendly than traditional methods. New challenges therefore emerge as the buses with spatiotemporal mobility become the bottleneck during delivery. By landing on buses, an Energy-Neutral Flight Principle and a delivery scheduling algorithm are proposed for the UAVs. Using the Energy-Neutral Flight Principle, each UAV can plan a flying path without depleting energy given buses with uncertain velocities. Besides, the delivery scheduling algorithm optimizes the delivery time and number of delivered parcels given warehouse location, logistics UAVs, parcel locations and buses. Comprehensive evaluations using a large-scale bus dataset demonstrate the superiority of the innovative logistics UAV schedule approach.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 899
Author(s):  
Djordje Mitrovic ◽  
Miguel Crespo Chacón ◽  
Aida Mérida García ◽  
Jorge García Morillo ◽  
Juan Antonio Rodríguez Diaz ◽  
...  

Studies have shown micro-hydropower (MHP) opportunities for energy recovery and CO2 reductions in the water sector. This paper conducts a large-scale assessment of this potential using a dataset amassed across six EU countries (Ireland, Northern Ireland, Scotland, Wales, Spain, and Portugal) for the drinking water, irrigation, and wastewater sectors. Extrapolating the collected data, the total annual MHP potential was estimated between 482.3 and 821.6 GWh, depending on the assumptions, divided among Ireland (15.5–32.2 GWh), Scotland (17.8–139.7 GWh), Northern Ireland (5.9–8.2 GWh), Wales (10.2–8.1 GWh), Spain (375.3–539.9 GWh), and Portugal (57.6–93.5 GWh) and distributed across the drinking water (43–67%), irrigation (51–30%), and wastewater (6–3%) sectors. The findings demonstrated reductions in energy consumption in water networks between 1.7 and 13.0%. Forty-five percent of the energy estimated from the analysed sites was associated with just 3% of their number, having a power output capacity >15 kW. This demonstrated that a significant proportion of energy could be exploited at a small number of sites, with a valuable contribution to net energy efficiency gains and CO2 emission reductions. This also demonstrates cost-effective, value-added, multi-country benefits to policy makers, establishing the case to incentivise MHP in water networks to help achieve the desired CO2 emissions reductions targets.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


2021 ◽  
Vol 11 (6) ◽  
pp. 497
Author(s):  
Yoonsuk Jung ◽  
Eui Im ◽  
Jinhee Lee ◽  
Hyeah Lee ◽  
Changmo Moon

Previous studies have evaluated the effects of antithrombotic agents on the performance of fecal immunochemical tests (FITs) for the detection of colorectal cancer (CRC), but the results were inconsistent and based on small sample sizes. We studied this topic using a large-scale population-based database. Using the Korean National Cancer Screening Program Database, we compared the performance of FITs for CRC detection between users and non-users of antiplatelet agents and warfarin. Non-users were matched according to age and sex. Among 5,426,469 eligible participants, 768,733 used antiplatelet agents (mono/dual/triple therapy, n = 701,683/63,211/3839), and 19,569 used warfarin, while 4,638,167 were non-users. Among antiplatelet agents, aspirin, clopidogrel, and cilostazol ranked first, second, and third, respectively, in terms of prescription rates. Users of antiplatelet agents (3.62% vs. 4.45%; relative risk (RR): 0.83; 95% confidence interval (CI): 0.78–0.88), aspirin (3.66% vs. 4.13%; RR: 0.90; 95% CI: 0.83–0.97), and clopidogrel (3.48% vs. 4.88%; RR: 0.72; 95% CI: 0.61–0.86) had lower positive predictive values (PPVs) for CRC detection than non-users. However, there were no significant differences in PPV between cilostazol vs. non-users and warfarin users vs. non-users. For PPV, the RR (users vs. non-users) for antiplatelet monotherapy was 0.86, while the RRs for dual and triple antiplatelet therapies (excluding cilostazol) were 0.67 and 0.22, respectively. For all antithrombotic agents, the sensitivity for CRC detection was not different between users and non-users. Use of antiplatelet agents, except cilostazol, may increase the false positives without improving the sensitivity of FITs for CRC detection.


Author(s):  
Krzysztof Jurczuk ◽  
Marcin Czajkowski ◽  
Marek Kretowski

AbstractThis paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is one of the alternatives to the top-down inducers. It searches for the tree structure and tests simultaneously and thus gives improvements in the prediction and size of resulting classifiers in many situations. However, it is the population-based and iterative approach that can be too computationally demanding to apply for big data mining directly. The paper demonstrates that this barrier can be overcome by smart distributed/parallel processing. Moreover, we ask the question whether the global approach can truly compete with the greedy systems for large-scale data. For this purpose, we propose a novel multi-GPU approach. It incorporates the knowledge of global DT induction and evolutionary algorithm parallelization together with efficient utilization of memory and computing GPU’s resources. The searches for the tree structure and tests are performed simultaneously on a CPU, while the fitness calculations are delegated to GPUs. Data-parallel decomposition strategy and CUDA framework are applied. Experimental validation is performed on both artificial and real-life datasets. In both cases, the obtained acceleration is very satisfactory. The solution is able to process even billions of instances in a few hours on a single workstation equipped with 4 GPUs. The impact of data characteristics (size and dimension) on convergence and speedup of the evolutionary search is also shown. When the number of GPUs grows, nearly linear scalability is observed what suggests that data size boundaries for evolutionary DT mining are fading.


Sign in / Sign up

Export Citation Format

Share Document