scholarly journals Feature-Enhanced Occlusion Perception Object Detection for Smart Cities

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jie Xu ◽  
Hanyuan Wang ◽  
Mingzhu Xu ◽  
Fan Yang ◽  
Yifei Zhou ◽  
...  

Object detection is used widely in smart cities including safety monitoring, traffic control, and car driving. However, in the smart city scenario, many objects will have occlusion problems. Moreover, most popular object detectors are often sensitive to various real-world occlusions. This paper proposes a feature-enhanced occlusion perception object detector by simultaneously detecting occluded objects and fully utilizing spatial information. To generate hard examples with occlusions, a mask generator localizes and masks discriminated regions with weakly supervised methods. To obtain enriched feature representation, we design a multiscale representation fusion module to combine hierarchical feature maps. Moreover, this method exploits contextual information by heaping up representations from different regions in feature maps. The model is trained end-to-end learning by minimizing the multitask loss. Our model obtains superior performance compared to previous object detectors, 77.4% mAP and 74.3% mAP on PASCAL VOC 2007 and PASCAL VOC 2012, respectively. It also achieves 24.6% mAP on MS COCO. Experiments demonstrate that the proposed method is useful to improve the effectiveness of object detection, making it highly suitable for smart cities application that need to discover key objects with occlusions.

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1235
Author(s):  
Yang Yang ◽  
Hongmin Deng

In order to make the classification and regression of single-stage detectors more accurate, an object detection algorithm named Global Context You-Only-Look-Once v3 (GC-YOLOv3) is proposed based on the You-Only-Look-Once (YOLO) in this paper. Firstly, a better cascading model with learnable semantic fusion between a feature extraction network and a feature pyramid network is designed to improve detection accuracy using a global context block. Secondly, the information to be retained is screened by combining three different scaling feature maps together. Finally, a global self-attention mechanism is used to highlight the useful information of feature maps while suppressing irrelevant information. Experiments show that our GC-YOLOv3 reaches a maximum of 55.5 object detection mean Average Precision (mAP)@0.5 on Common Objects in Context (COCO) 2017 test-dev and that the mAP is 5.1% higher than that of the YOLOv3 algorithm on Pascal Visual Object Classes (PASCAL VOC) 2007 test set. Therefore, experiments indicate that the proposed GC-YOLOv3 model exhibits optimal performance on the PASCAL VOC and COCO datasets.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 909
Author(s):  
Shuo Li ◽  
Chiru Ge ◽  
Xiaodan Sui ◽  
Yuanjie Zheng ◽  
Weikuan Jia

Cup-to-disc ratio (CDR) is of great importance during assessing structural changes at the optic nerve head (ONH) and diagnosis of glaucoma. While most efforts have been put on acquiring the CDR number through CNN-based segmentation algorithms followed by the calculation of CDR, these methods usually only focus on the features in the convolution kernel, which is, after all, the operation of the local region, ignoring the contribution of rich global features (such as distant pixels) to the current features. In this paper, a new end-to-end channel and spatial attention regression deep learning network is proposed to deduces CDR number from the regression perspective and combine the self-attention mechanism with the regression network. Our network consists of four modules: the feature extraction module to extract deep features expressing the complicated pattern of optic disc (OD) and optic cup (OC), the attention module including the channel attention block (CAB) and the spatial attention block (SAB) to improve feature representation by aggregating long-range contextual information, the regression module to deduce CDR number directly, and the segmentation-auxiliary module to focus the model’s attention on the relevant features instead of the background region. Especially, the CAB selects relatively important feature maps in channel dimension, shifting the emphasis on the OD and OC region; meanwhile, the SAB learns the discriminative ability of feature representation at pixel level by capturing the relationship of intra-feature map. The experimental results of ORIGA dataset show that our method obtains absolute CDR error of 0.067 and the Pearson’s correlation coefficient of 0.694 in estimating CDR and our method has a great potential in predicting the CDR number.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1737 ◽  
Author(s):  
Tae-young Ko ◽  
Seung-ho Lee

This paper proposes a novel method of semantic segmentation, consisting of modified dilated residual network, atrous pyramid pooling module, and backpropagation, that is applicable to augmented reality (AR). In the proposed method, the modified dilated residual network extracts a feature map from the original images and maintains spatial information. The atrous pyramid pooling module places convolutions in parallel and layers feature maps in a pyramid shape to extract objects occupying small areas in the image; these are converted into one channel using a 1 × 1 convolution. Backpropagation compares the semantic segmentation obtained through convolution from the final feature map with the ground truth provided by a database. Losses can be reduced by applying backpropagation to the modified dilated residual network to change the weighting. The proposed method was compared with other methods on the Cityscapes and PASCAL VOC 2012 databases. The proposed method achieved accuracies of 82.8 and 89.8 mean intersection over union (mIOU) and frame rates of 61 and 64.3 frames per second (fps) for the Cityscapes and PASCAL VOC 2012 databases, respectively. These results prove the applicability of the proposed method for implementing natural AR applications at actual speeds because the frame rate is greater than 60 fps.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7730
Author(s):  
◽  

Semantic segmentation is one of the most active research topics in computer vision with the goal to assign dense semantic labels for all pixels in a given image. In this paper, we introduce HFEN (Hierarchical Feature Extraction Network), a lightweight network to reach a balance between inference speed and segmentation accuracy. Our architecture is based on an encoder-decoder framework. The input images are down-sampled through an efficient encoder to extract multi-layer features. Then the extracted features are fused via a decoder, where the global contextual information and spatial information are aggregated for final segmentations with real-time performance. Extensive experiments have been conducted on two standard benchmarks, Cityscapes and Camvid, where our network achieved superior performance on NVIDIA 2080Ti.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Kaifeng Li ◽  
Bin Wang

With the rapid development of deep learning and the wide usage of Unmanned Aerial Vehicles (UAVs), CNN-based algorithms of vehicle detection in aerial images have been widely studied in the past several years. As a downstream task of the general object detection, there are some differences between the vehicle detection in aerial images and the general object detection in ground view images, e.g., larger image areas, smaller target sizes, and more complex background. In this paper, to improve the performance of this task, a Dense Attentional Residual Network (DAR-Net) is proposed. The proposed network employs a novel dense waterfall residual block (DW res-block) to effectively preserve the spatial information and extract high-level semantic information at the same time. A multiscale receptive field attention (MRFA) module is also designed to select the informative feature from the feature maps and enhance the ability of multiscale perception. Based on the DW res-block and MRFA module, to protect the spatial information, the proposed framework adopts a new backbone that only downsamples the feature map 3 times; i.e., the total downsampling ratio of the proposed backbone is 8. These designs could alleviate the degradation problem, improve the information flow, and strengthen the feature reuse. In addition, deep-projection units are used to reduce the impact of information loss caused by downsampling operations, and the identity mapping is applied to each stage of the proposed backbone to further improve the information flow. The proposed DAR-Net is evaluated on VEDAI, UCAS-AOD, and DOTA datasets. The experimental results demonstrate that the proposed framework outperforms other state-of-the-art algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3031
Author(s):  
Jing Lian ◽  
Yuhang Yin ◽  
Linhui Li ◽  
Zhenghao Wang ◽  
Yafu Zhou

There are many small objects in traffic scenes, but due to their low resolution and limited information, their detection is still a challenge. Small object detection is very important for the understanding of traffic scene environments. To improve the detection accuracy of small objects in traffic scenes, we propose a small object detection method in traffic scenes based on attention feature fusion. First, a multi-scale channel attention block (MS-CAB) is designed, which uses local and global scales to aggregate the effective information of the feature maps. Based on this block, an attention feature fusion block (AFFB) is proposed, which can better integrate contextual information from different layers. Finally, the AFFB is used to replace the linear fusion module in the object detection network and obtain the final network structure. The experimental results show that, compared to the benchmark model YOLOv5s, this method has achieved a higher mean Average Precison (mAP) under the premise of ensuring real-time performance. It increases the mAP of all objects by 0.9 percentage points on the validation set of the traffic scene dataset BDD100K, and at the same time, increases the mAP of small objects by 3.5%.


2021 ◽  
Vol 13 (6) ◽  
pp. 1198
Author(s):  
Bi-Yuan Liu ◽  
Huai-Xin Chen ◽  
Zhou Huang ◽  
Xing Liu ◽  
Yun-Zhi Yang

Drone-based object detection has been widely applied in ground object surveillance, urban patrol, and some other fields. However, the dramatic scale changes and complex backgrounds of drone images usually result in weak feature representation of small objects, which makes it challenging to achieve high-precision object detection. Aiming to improve small objects detection, this paper proposes a novel cross-scale knowledge distillation (CSKD) method, which enhances the features of small objects in a manner similar to image enlargement, so it is termed as ZoomInNet. First, based on an efficient feature pyramid network structure, the teacher and student network are trained with images in different scales to introduce the cross-scale feature. Then, the proposed layer adaption (LA) and feature level alignment (FA) mechanisms are applied to align the feature size of the two models. After that, the adaptive key distillation point (AKDP) algorithm is used to get the crucial positions in feature maps that need knowledge distillation. Finally, the position-aware L2 loss is used to measure the difference between feature maps from cross-scale models, realizing the cross-scale information compression in a single model. Experiments on the challenging Visdrone2018 dataset show that the proposed method draws on the advantages of the image pyramid methods, while avoids the large calculation of them and significantly improves the detection accuracy of small objects. Simultaneously, the comparison with mainstream methods proves that our method has the best performance in small object detection.


2021 ◽  
Vol 11 (7) ◽  
pp. 3111
Author(s):  
Enjie Ding ◽  
Yuhao Cheng ◽  
Chengcheng Xiao ◽  
Zhongyu Liu ◽  
Wanli Yu

Light-weight convolutional neural networks (CNNs) suffer limited feature representation capabilities due to low computational budgets, resulting in degradation in performance. To make CNNs more efficient, dynamic neural networks (DyNet) have been proposed to increase the complexity of the model by using the Squeeze-and-Excitation (SE) module to adaptively obtain the importance of each convolution kernel through the attention mechanism. However, the attention mechanism in the SE network (SENet) selects all channel information for calculations, which brings essential challenges: (a) interference caused by the internal redundant information; and (b) increasing number of network calculations. To address the above problems, this work proposes a dynamic convolutional network (termed as EAM-DyNet) to reduce the number of channels in feature maps by extracting only the useful spatial information. EAM-DyNet first uses the random channel reduction and channel grouping reduction methods to remove the redundancy in the information. As the downsampling of information can lead to the loss of useful information, it then applies an adaptive average pooling method to maintain the information integrity. Extensive experimental results on the baseline demonstrate that EAM-DyNet outperformed the existing approaches, thus it can achieve higher accuracy of the network test and less network parameters.


2021 ◽  
Vol 11 (3) ◽  
pp. 1096
Author(s):  
Qing Li ◽  
Yingcheng Lin ◽  
Wei He

The high requirements for computing and memory are the biggest challenges in deploying existing object detection networks to embedded devices. Living lightweight object detectors directly use lightweight neural network architectures such as MobileNet or ShuffleNet pre-trained on large-scale classification datasets, which results in poor network structure flexibility and is not suitable for some specific scenarios. In this paper, we propose a lightweight object detection network Single-Shot MultiBox Detector (SSD)7-Feature Fusion and Attention Mechanism (FFAM), which saves storage space and reduces the amount of calculation by reducing the number of convolutional layers. We offer a novel Feature Fusion and Attention Mechanism (FFAM) method to improve detection accuracy. Firstly, the FFAM method fuses high-level semantic information-rich feature maps with low-level feature maps to improve small objects’ detection accuracy. The lightweight attention mechanism cascaded by channels and spatial attention modules is employed to enhance the target’s contextual information and guide the network to focus on its easy-to-recognize features. The SSD7-FFAM achieves 83.7% mean Average Precision (mAP), 1.66 MB parameters, and 0.033 s average running time on the NWPU VHR-10 dataset. The results indicate that the proposed SSD7-FFAM is more suitable for deployment to embedded devices for real-time object detection.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2158
Author(s):  
Juan Du ◽  
Kuanhong Cheng ◽  
Yue Yu ◽  
Dabao Wang ◽  
Huixin Zhou

Panchromatic (PAN) images contain abundant spatial information that is useful for earth observation, but always suffer from low-resolution ( LR) due to the sensor limitation and large-scale view field. The current super-resolution (SR) methods based on traditional attention mechanism have shown remarkable advantages but remain imperfect to reconstruct the edge details of SR images. To address this problem, an improved SR model which involves the self-attention augmented Wasserstein generative adversarial network ( SAA-WGAN) is designed to dig out the reference information among multiple features for detail enhancement. We use an encoder-decoder network followed by a fully convolutional network (FCN) as the backbone to extract multi-scale features and reconstruct the High-resolution (HR) results. To exploit the relevance between multi-layer feature maps, we first integrate a convolutional block attention module (CBAM) into each skip-connection of the encoder-decoder subnet, generating weighted maps to enhance both channel-wise and spatial-wise feature representation automatically. Besides, considering that the HR results and LR inputs are highly similar in structure, yet cannot be fully reflected in traditional attention mechanism, we, therefore, designed a self augmented attention (SAA) module, where the attention weights are produced dynamically via a similarity function between hidden features; this design allows the network to flexibly adjust the fraction relevance among multi-layer features and keep the long-range inter information, which is helpful to preserve details. In addition, the pixel-wise loss is combined with perceptual and gradient loss to achieve comprehensive supervision. Experiments on benchmark datasets demonstrate that the proposed method outperforms other SR methods in terms of both objective evaluation and visual effect.


Sign in / Sign up

Export Citation Format

Share Document