scholarly journals Insights into Underrail Rubber Pad’s Effect on Vehicle-Track-Viaduct System Dynamics

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Linya Liu ◽  
Zhiyuan Zuo ◽  
Yunlai Zhou ◽  
Jialiang Qin ◽  
Zhenyu Niu

To scientifically characterize the dynamic mechanical characteristics of the rubber pad under the rail of fasteners and its influence on the dynamic response of the vehicle-rail-viaduct system, taking the rubber pad under the rail of WJ-7B high-speed railway (HSR) with constant resistance as an example, a TFDV model was applied to characterize the viscoelasticity of the rubber pad and the theoretical model in the dynamic coupling of vehicle-rail-bridge was also studied. The results show that the energy storage modulus and loss factor of rubber pad under rail show a curved surface relation versus the change of frequency-temperature. In a certain frequency/temperature range, the energy storage modulus and loss factor of rubber pad under rail increase with the decrease of temperature and the increase of frequency, and the influence of low temperature on dynamic parameters is more significant. With the decrease of temperature, the minimum value of total dynamic flexibility decreases, and the corresponding extreme frequency shifts to high frequency. Viscoelastic dynamic features of rubber pad under rail mainly affect the dynamic response of vehicle subsystem and rail-bridge subsystem. With the decrease of ambient temperature of rubber pad, the dominant frequency band of power spectrum curve of each structure shifts to high frequency.


1996 ◽  
Vol 118 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Q. J. Ge ◽  
J. Rastegar

For a given high-speed machinery, a significant source of the internally induced vibrational excitation is the presence of high frequency harmonics in the trajectories that the system is forced to follow. This paper presents a Bernstein-Be´zier form of harmonic trajectory patterns for synthesizing low-harmonic trajectories. Similar to Bernstein-Be´zier polynomial curves, Bernstein-Be´zier harmonic trajectories can be defined either explicitly using Bernstein-Be´zier basis harmonics or recursively using the harmonic deCasteljau algorithm. The second part of the paper demonstrates how a Bernstein-Be´zier trajectory can be combined with the inverse dynamics of a robot manipulator for synthesizing a joint trajectory that demands “minimal” dynamic response from its actuators. An example involving a planar 2R robot is also presented.



2016 ◽  
Vol 33 (2) ◽  
pp. 17-29 ◽  
Author(s):  
Manho Lee ◽  
Daniel H. Jung ◽  
Heegon Kim ◽  
Jonghyun Cho ◽  
Joungho Kim


2021 ◽  
Vol 12 (2) ◽  
pp. 913-922
Author(s):  
Hao Li ◽  
Jahangir Rastegar ◽  
Baosheng Wang

Abstract. In high-speed and high-precision machinery, trajectories with high-frequency harmonic content are one of the main sources of reduction of operational precision. Trajectories with high-frequency harmonic content generally demand even higher-harmonic actuating forces/torques due to the nonlinear dynamics of such systems, which may excite natural modes of vibration of the system and/or be beyond the dynamic response limitation of the actuation devices. In this paper, a global interpolation algorithm that uses the trajectory pattern method (TPM) for synthesizing low-harmonic trajectories is presented. The trajectory synthesis with the TPM is performed with a prescribed fundamental frequency and continuous jounce boundary condition, which would minimize the number of high-harmonic components in the required actuation forces/torques and avoid excitation of the system modes of vibration. The minimal curvature variation energy method, Lagrange multiplier method, and contour error control are used to obtain smooth kinematic profiles and satisfy the trajectory accuracy requirements. As an example, trajectory patterns that consist of a fundamental frequency sinusoidal time function and its first three harmonics are used to synthesize the desired trajectories for a selected dynamic system. The synthesized trajectories are shown to cause minimal system vibration during its operation. A comparison with a commonly used trajectory synthesis method clearly shows the superiority of the developed TPM-based approach in reducing vibration and demand on the actuator dynamic response, thereby allowing the system to operate at higher speeds and precision.



2007 ◽  
Vol 340-341 ◽  
pp. 283-288 ◽  
Author(s):  
Jung Han Song ◽  
Hoon Huh

The dynamic response of the turbine blade materials is indispensable for analysis of erosions of turbine blades as a result of impulsive loading associated with gas flow. This paper is concerned with the dynamic material properties of the Inconel 718 alloy which is widely used in the high speed turbine blade. The dynamic response at the corresponding level of the strain rate should be acquired with an adequate experimental technique and apparatus due to the inertia effect and the stress wave propagation. In this paper, the dynamic response of the Inconel 718 at the intermediate strain rate ranged from 1/s to 400/s is obtained from the high speed tensile test and that at the high strain rate above 1000/s is obtained from the split Hopkinson pressure bar test. The effects of the strain rate on the dynamic flow stress, the strain rate sensitivity and the failure elongation are evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 3000/s are interpolated in order to construct the constitutive relation that should be applied to simulate the dynamic behavior of the turbine blade made of the Inconel 718.



2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Umut D. Çakmak ◽  
Zoltán Major ◽  
Michael Fischlschweiger

In the field of rehabilitation and neuroscience, shape memory alloys play a crucial role as lightweight actuators. Devices are exploiting the shape memory effect by transforming heat into mechanical work. In rehabilitation applications, dynamic loading of the respective device occurs, which in turn influences the mechanical consequences of the phase transforming alloy. Hence in this work, dynamic thermomechanical material behavior of temperature-triggered phase transforming NiTi shape memory alloy (SMA) wires with different chemical compositions and geometries was experimentally investigated. Storage modulus and mechanical loss factor of NiTi alloys at different temperatures and loading frequencies were analyzed under force-controlled conditions. Counterintuitive storage modulus- and loss factor-dependent trends regarding the loading frequency dependency of the mechanical properties on the materials’ composition and geometry were, hence, obtained. It was revealed that loss factors showed a pronounced loading frequency dependency, whereas the storage modulus was not affected. It was shown that force-controlled conditions led to a lower storage modulus than expected. Furthermore, it turned out that a simple empirical relation could capture the characteristic temperature dependency of the storage modulus, which is an important input relation for modeling the rehabilitation device behavior under different dynamic and temperature loading conditions, taking directly into account the material behavior of the shape memory alloy.



Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1790
Author(s):  
Francesco Galvagnini ◽  
Andrea Dorigato ◽  
Luca Fambri ◽  
Giulia Fredi ◽  
Alessandro Pegoretti

Syntactic foams (SFs) combining an epoxy resin and hollow glass microspheres (HGM) feature a unique combination of low density, high mechanical properties, and low thermal conductivity which can be tuned according to specific applications. In this work, the versatility of epoxy/HGM SFs was further expanded by adding a microencapsulated phase change material (PCM) providing thermal energy storage (TES) ability at a phase change temperature of 43 °C. At this aim, fifteen epoxy (HGM/PCM) compositions with a total filler content (HGM + PCM) of up to 40 vol% were prepared and characterized. The experimental results were fitted with statistical models, which resulted in ternary diagrams that visually represented the properties of the ternary systems and simplified trend identification. Dynamic rheological tests showed that the PCM increased the viscosity of the epoxy resin more than HGM due to the smaller average size (20 µm vs. 60 µm) and that the systems containing both HGM and PCM showed lower viscosity than those containing only one filler type, due to the higher packing efficiency of bimodal filler distributions. HGM strongly reduced the gravimetric density and the thermal insulation properties. In fact, the sample with 40 vol% of HGM showed a density of 0.735 g/cm3 (−35% than neat epoxy) and a thermal conductivity of 0.12 W/(m∙K) (−40% than neat epoxy). Moreover, the increase in the PCM content increased the specific phase change enthalpy, which was up to 68 J/g for the sample with 40 vol% of PCM, with a consequent improvement in the thermal management ability that was also evidenced by temperature profiling tests in transient heating and cooling regimes. Finally, dynamical mechanical thermal analysis (DMTA) showed that both fillers decreased the storage modulus but generally increased the storage modulus normalized by density (E′/ρ) up to 2440 MPa/(g/cm3) at 25 °C with 40 vol% of HGM (+48% than neat epoxy). These results confirmed that the main asset of these ternary multifunctional syntactic foams is their versatility, as the composition can be tuned to reach the property set that best matches the application requirements in terms of TES ability, thermal insulation, and low density.



Author(s):  
Ishola Valere Loic Chango ◽  
Muhan Yan ◽  
Xianzhang Ling ◽  
Tang Liang ◽  
Ogoubi Cyriaque Assogba




Sign in / Sign up

Export Citation Format

Share Document